Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(9): 3591-6, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550483

RESUMO

The neural control of movements in vertebrates is based on a set of modules, like the central pattern generator networks (CPGs) in the spinal cord coordinating locomotion. Sensory feedback is not required for the CPGs to generate the appropriate motor pattern and neither a detailed control from higher brain centers. Reticulospinal neurons in the brainstem activate the locomotor network, and the same neurons also convey signals from higher brain regions, such as turning/steering commands from the optic tectum (superior colliculus). A tonic increase in the background excitatory drive of the reticulospinal neurons would be sufficient to produce coordinated locomotor activity. However, in both vertebrates and invertebrates, descending systems are in addition phasically modulated because of feedback from the ongoing CPG activity. We use the lamprey as a model for investigating the role of this phasic modulation of the reticulospinal activity, because the brainstem-spinal cord networks are known down to the cellular level in this phylogenetically oldest extant vertebrate. We describe how the phasic modulation of reticulospinal activity from the spinal CPG ensures reliable steering/turning commands without the need for a very precise timing of on- or offset, by using a biophysically detailed large-scale (19,600 model neurons and 646,800 synapses) computational model of the lamprey brainstem-spinal cord network. To verify that the simulated neural network can control body movements, including turning, the spinal activity is fed to a mechanical model of lamprey swimming. The simulations also predict that, in contrast to reticulospinal neurons, tectal steering/turning command neurons should have minimal frequency adaptive properties, which has been confirmed experimentally.


Assuntos
Geradores de Padrão Central/metabolismo , Lampreias/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Neurônios Motores/metabolismo , Colículos Superiores/metabolismo , Animais , Simulação por Computador , Vias Eferentes/metabolismo , Orientação/fisiologia , Técnicas de Patch-Clamp
2.
Artigo em Inglês | MEDLINE | ID: mdl-29467627

RESUMO

The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.


Assuntos
Gânglios da Base/metabolismo , Simulação por Computador , Corpo Estriado/metabolismo , Dopamina/metabolismo , Modelos Neurológicos , Canais de Potássio Shal/metabolismo , Animais , Gânglios da Base/citologia , Corpo Estriado/citologia , Potenciais da Membrana/fisiologia , Vias Neurais/citologia , Vias Neurais/metabolismo
3.
Biol Cybern ; 86(1): 1-14, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11918208

RESUMO

Straight locomotion in the lamprey is, at the segmental level, characterized by alternating bursts of motor activity with equal duration and spike frequency on the left and the right sides of the body. Lateral turns are characterized by three main changes in this pattern: (1) in the turn cycle, the spike frequency, burst duration, and burst proportion (burst duration/cycle duration) increase on the turning side; (2) the cycle duration increases in both the turn cycle and the succeeding cycle; and (3) in the cycle succeeding the turn cycle, the burst duration increases on the non-turning side (rebound). We investigated mechanisms for the generation of turns in single-segment models of the lamprey locomotor spinal network. Activation of crossing inhibitory neurons proved a sufficient mechanism to explain all three changes in the locomotor rhythm during a fictive turn. Increased activation of these cells inhibits the activity of the opposite side during the prolonged burst of the turn cycle, and slows down the locomotor rhythm. Secondly, this activation of the crossing inhibitory neurons is accompanied by an increased calcium influx into the cells. This gives a suppressed activity on the turning side and a contralateral rebound after the turn, through activation of calcium-dependent potassium channels.


Assuntos
Lampreias/fisiologia , Atividade Motora/fisiologia , Animais , Lateralidade Funcional , Modelos Neurológicos , Atividade Motora/efeitos dos fármacos , N-Metilaspartato/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA