Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Radiol Prot ; 41(1)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33202388

RESUMO

Laser processing with ultra-short laser pulses enables machining of materials with high accuracy and throughput. The development of novel laser technologies with laser pulse repetition rates up to the MHz range opened the way for industrial manufacturing processes. From a radiological point of view this evolution is important, because x-ray radiation can be generated as an unwanted side effect in laser material processing. Even if the emitted x-ray dose per pulse is comparably low, the x-ray dose can become hazardous to health at high laser repetition rates. Therefore, radiation protection must be considered. This article provides an overview on the generation and detection of x-rays in laser material processing, as well as on the handling of this radiation risk in the framework of radiological protection.


Assuntos
Lasers , Proteção Radiológica , Radiografia , Raios X
2.
BMC Genet ; 20(1): 60, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337331

RESUMO

BACKGROUND: The ornamental crop Hydrangea macrophylla develops highly attractive lacecap (wild type) or mophead inflorescences. The mophead trait, which is mostly favored by consumers, is recessively inherited by the INFLORESCENCE TYPE locus (INF). If lacecap cultivars are crossed with mophead cultivars, then either 50% or all progenies develop lacecap inflorescences, depending on the zygosity at the INF locus. For most cultivars, the zygosity at the INF locus is unknown. Furthermore, the determination of the inflorescence type in offspring populations is time-consuming, because seedlings flower the first time in the 2nd year after sowing. Within this study, we aimed to develop DNA-based markers that allow to determine the zygosity at the INF locus of prospective parental plants and to predict the inflorescence phenotype of seedlings already in the non-flowering stage. RESULTS: By crossing a mophead and a lacecap cultivar of H. macrophylla, we produced a pseudo-backcross F1 population consisting of 422 plants. These plants segregated into 279 lacecap, 73 mophead, 3 intermediate and 67 non-flowering plants, differing significantly from the expected 1:1 segregation ratio. Surprisingly, 75% of these plants were triploid, although both parents were diploid. We found that the lacecap parent produced unreduced pollen, which induced the formation of triploids. 380 randomly selected F1 plants were genotyped by genotyping-by-sequencing (GbS). Using a genome assembly of cultivar 'Sir Joseph Banks', we performed subsequently a bulk sequence analysis with pooled GbS data of diploid versus mophead plants. We identified directly 2 markers tightly linked with the INF locus, each of them explaining 99.7% of the inflorescence phenotype. Using a collection consisting of 56 diploid, triploid or tetraploid H. macrophylla varieties, we detected 6 sequence variants for one of these markers. Two variants were associated with the mophead phenotype. Furthermore, we found by marker analysis a co-segregation between the mophead and the non-flowering trait, which indicates a major flowering time locus next to the INF locus. CONCLUSION: Through bulk sequence analysis of pooled GbS data from diploid and polyploid F1 plants, we identify rapidly tightly linked markers for the inflorescence type, a dominant-recessively inherited trait in the non-model plant species H. macrophylla.


Assuntos
Diploide , Genótipo , Hydrangea/química , Hydrangea/genética , Inflorescência , Triploidia , Sequência de Bases , Flores , Genoma de Planta , Fenótipo , Locos de Características Quantitativas
3.
Biomed Eng Online ; 15(Suppl 3): 144, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28105952

RESUMO

BACKGROUND: Virtual reality (VR) based applications play an increasing role in motor rehabilitation. They provide an interactive and individualized environment in addition to increased motivation during motor tasks as well as facilitating motor learning through multimodal sensory information. Several previous studies have shown positive effect of VR-based treatments for lower extremity motor rehabilitation in neurological conditions, but the characteristics of these VR applications have not been systematically investigated. The visual information on the user's movement in the virtual environment, also called movement visualisation (MV), is a key element of VR-based rehabilitation interventions. The present review proposes categorization of Movement Visualisations of VR-based rehabilitation therapy for neurological conditions and also summarises current research in lower limb application. METHODS: A systematic search of literature on VR-based intervention for gait and balance rehabilitation in neurological conditions was performed in the databases namely; MEDLINE (Ovid), AMED, EMBASE, CINAHL, and PsycInfo. Studies using non-virtual environments or applications to improve cognitive function, activities of daily living, or psychotherapy were excluded. The VR interventions of the included studies were analysed on their MV. RESULTS: In total 43 publications were selected based on the inclusion criteria. Seven distinct MV groups could be differentiated: indirect MV (N = 13), abstract MV (N = 11), augmented reality MV (N = 9), avatar MV (N = 5), tracking MV (N = 4), combined MV (N = 1), and no MV (N = 2). In two included articles the visualisation conditions included different MV groups within the same study. Additionally, differences in motor performance could not be analysed because of the differences in the study design. Three studies investigated different visualisations within the same MV group and hence limited information can be extracted from one study. CONCLUSIONS: The review demonstrates that individuals' movements during VR-based motor training can be displayed in different ways. Future studies are necessary to fundamentally explore the nature of this VR information and its effect on motor outcome.


Assuntos
Extremidade Inferior/fisiopatologia , Doenças do Sistema Nervoso/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Atividades Cotidianas , Simulação por Computador , Marcha , Humanos , Destreza Motora , Movimento , Equilíbrio Postural , Recuperação de Função Fisiológica , Interface Usuário-Computador , Jogos de Vídeo
4.
Opt Express ; 23(1): 61-71, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25835654

RESUMO

Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

5.
Opt Express ; 23(20): 25959-71, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480111

RESUMO

Single- and two-color double-fs-pulse experiments were performed on titanium to study the dynamics of the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder inter-ferometer generated polarization controlled (parallel or cross-polarized) double-pulse sequences in two configurations - either at 800 nm only, or at 400 and 800 nm wavelengths. The inter-pulse delays of the individual 50-fs pulses ranged up to some tens of picoseconds. Multiple of these single- or two-color double-fs-pulse sequences were collinearly focused by a spherical mirror to the sample surface. In both experimental configurations, the peak fluence of each individual pulse was kept below its respective ablation threshold and only the joint action of both pulses lead to the formation of LIPSS. Their resulting characteristics were analyzed by scanning electron microscopy and the periods were quantified by Fourier analyses. The LIPSS periods along with the orientation allow a clear identification of the pulse which dominates the energy coupling to the material. A plasmonic model successfully explains the delay-dependence of the LIPSS on titanium and confirms the importance of the ultrafast energy deposition stage for LIPSS formation.

6.
Opt Express ; 21(24): 29643-55, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514516

RESUMO

The formation of near-wavelength laser-induced periodic surface structures (LIPSS) on silicon upon irradiation with sequences of Ti:sapphire femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied theoretically. For this purpose, the nonlinear generation of conduction band electrons in silicon and their relaxation is numerically calculated using a two-temperature model approach including intrapulse changes of optical properties, transport, diffusion and recombination effects. Following the idea that surface plasmon polaritons (SPP) can be excited when the material turns from semiconducting to metallic state, the "SPP active area" is calculated as function of fluence and double-pulse delay up to several picoseconds and compared to the experimentally observed rippled surface areas. Evidence is presented that multi-photon absorption explains the large increase of the rippled area for temporally overlapping pulses. For longer double-pulse delays, relevant relaxation processes are identified. The results demonstrate that femtosecond LIPSS on silicon are caused by the excitation of SPP and can be controlled by temporal pulse shaping.

7.
Materials (Basel) ; 16(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36676556

RESUMO

"Advanced Pulse Laser Machining Technology" is a rapidly growing field that can be tailored to special industrial and scientific applications [...].

8.
Sci Rep ; 12(1): 15821, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138031

RESUMO

Many tasks such as physical rehabilitation, vehicle co-piloting or surgical training, rely on physical assistance from a partner. While this assistance may be provided by a robotic interface, how to implement the necessary haptic support to help improve performance without impeding learning is unclear. In this paper, we study the influence of haptic interaction on the performance and learning of a shared tracking task. We compare in a tracking task the interaction with a human partner, the trajectory guidance traditionally used in training robots, and a robot partner yielding human-like interaction. While trajectory guidance resulted in the best performance during training, it dramatically reduced error variability and hindered learning. In contrast, the reactive human and robot partners did not impede the adaptation and allowed the subjects to learn without modifying their movement patterns. Moreover, interaction with a human partner was the only condition that demonstrated an improvement in retention and transfer learning compared to a subject training alone. These results reveal distinctly different learning behaviour in training with a human compared to trajectory guidance, and similar learning between the robotic partner and human partner. Therefore, for movement assistance and learning, algorithms that react to the user's motion and change their behaviour accordingly are better suited.


Assuntos
Aprendizagem , Robótica , Algoritmos , Humanos , Movimento , Robótica/métodos
9.
Materials (Basel) ; 15(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36556801

RESUMO

Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 1013 W cm-2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances I0 ranging from 7.3 × 1013 W cm-2 up to 3.0 × 1014 W cm-2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 1014 W cm-2.

10.
Materials (Basel) ; 14(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885319

RESUMO

Interactions between ultrashort laser pulses with intensities larger than 1013 W/cm2 and solids during material processing can lead to the emission of X-rays with photon energies above 5 keV, causing radiation hazards to operators. A framework for inspecting X-ray emission hazards during laser material processing has yet to be developed. One requirement for conducting radiation protection inspections is using a reference scenario, i.e., laser settings and process parameters that will lead to an almost constant and high level of X-ray emissions. To study the feasibility of setting up a reference scenario in practice, ambient dose rates and photon energies were measured using traceable measurement equipment in an industrial setting at SCHOTT AG. Ultrashort pulsed (USP) lasers with a maximum average power of 220 W provided the opportunity to measure X-ray emissions at laser peak intensities of up to 3.3 × 1015 W/cm2 at pulse durations of ~1 ps. The results indicate that increasing the laser peak intensity is insufficient to generate high dose rates. The investigations were affected by various constraints which prevented measuring high ambient dose rates. In this work, a list of issues which may be encountered when performing measurements at USP-laser machines in industrial settings is identified.

11.
Materials (Basel) ; 14(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801726

RESUMO

Superficial amorphization and re-crystallization of silicon in <111> and <100> orientation after irradiation by femtosecond laser pulses (790 nm, 30 fs) are studied using optical imaging and transmission electron microscopy. Spectroscopic imaging ellipsometry (SIE) allows fast data acquisition at multiple wavelengths and provides experimental data for calculating nanometric amorphous layer thickness profiles with micrometric lateral resolution based on a thin-film layer model. For a radially Gaussian laser beam and at moderate peak fluences above the melting and below the ablation thresholds, laterally parabolic amorphous layer profiles with maximum thicknesses of several tens of nanometers were quantitatively attained. The accuracy of the calculations is verified experimentally by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (STEM-EDX). Along with topographic information obtained by atomic force microscopy (AFM), a comprehensive picture of the superficial re-solidification of silicon after local melting by femtosecond laser pulses is drawn.

12.
IEEE Open J Eng Med Biol ; 1: 133-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35402952

RESUMO

Objective: The last decades have seen a surge of robots for physical training and work assistance. How to best control these interfaces is unknown, although arguably the interaction should be similar to human movement assistance. Methods: We compare the behaviour and assessment of subjects tracking a moving target with assistance from (i) trajectory guidance (as typically used in robots for physical training), (ii) a human partner, and (iii) the reactive robot partner of Takagi et al. Results: Trajectory guidance was recognised as robotic, while the robot partner was felt as human-like. However, trajectory guidance was preferred to assistance from a human partner, which was recognised as less predictable. The robot partner also was felt to be more predictable and helpful than a human partner, and was preferred. Conclusions: While subjects like to rely on predictable interaction, such as in trajectory guidance, the control reactivity of the robot partner is essential for perceiving an interaction as human-like.

13.
Nanomaterials (Basel) ; 10(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339202

RESUMO

Irradiation with ultra-short (femtosecond) laser beams enables the generation of sub-wavelength laser-induced periodic surface structures (LIPSS) over large areas with controlled spatial periodicity, orientation, and depths affecting only a material layer on the sub-micrometer scale. This study reports on how fs-laser irradiation of commercially available Nb foil samples affects their superconducting behavior. DC magnetization and AC susceptibility measurements at cryogenic temperatures and with magnetic fields of different amplitude and orientation are thus analyzed and reported. This study pays special attention to the surface superconducting layer that persists above the upper critical magnetic field strength Hc2, and disappears at a higher nucleation field strength Hc3. Characteristic changes were distinguished between the surface properties of the laser-irradiated samples, as compared to the corresponding reference samples (non-irradiated). Clear correlations have been observed between the surface nanostructures and the nucleation field Hc3, which depends on the relative orientation of the magnetic field and the surface patterns developed by the laser irradiation.

14.
J Clin Invest ; 116(7): 1955-62, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794736

RESUMO

Tumor-associated fibroblasts are key regulators of tumorigenesis. In contrast to tumor cells, which are genetically unstable and mutate frequently, the presence of genetically more stable fibroblasts in the tumor-stromal compartment makes them an optimal target for cancer immunotherapy. These cells are also the primary source of collagen type I, which contributes to decreased chemotherapeutic drug uptake in tumors and plays a significant role in regulating tumor sensitivity to a variety of chemotherapies. To specifically kill tumor-associated fibroblasts, we constructed an oral DNA vaccine targeting fibroblast activation protein (FAP), which is specifically overexpressed by fibroblasts in the tumor stroma. Through CD8+ T cell-mediated killing of tumor-associated fibroblasts, our vaccine successfully suppressed primary tumor cell growth and metastasis of multidrug-resistant murine colon and breast carcinoma. Furthermore, tumor tissue of FAP-vaccinated mice revealed markedly decreased collagen type I expression and up to 70% greater uptake of chemotherapeutic drugs. Most importantly, pFap-vaccinated mice treated with chemotherapy showed a 3-fold prolongation in lifespan and marked suppression of tumor growth, with 50% of the animals completely rejecting a tumor cell challenge. This strategy opens a new venue for the combination of immuno- and chemotherapies.


Assuntos
Vacinas Anticâncer , Fibroblastos/metabolismo , Gelatinases/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias , Serina Endopeptidases/metabolismo , Vacinas de DNA , Animais , Linfócitos T CD8-Positivos/imunologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Endopeptidases , Feminino , Gelatinases/genética , Gelatinases/uso terapêutico , Proteínas de Membrana/genética , Proteínas de Membrana/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Serina Endopeptidases/genética , Serina Endopeptidases/uso terapêutico , Taxa de Sobrevida
15.
Stem Cells ; 26(12): 3037-46, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18802034

RESUMO

A multifaceted approach is presented as a general strategy to identify new drug targets in a breast cancer stem cell-containing side population. The approach we have utilized combines side population cell sorting and stable isotope labeling by amino acids in cell culture with mass spectrometry to compare and identify proteins with differential expression profiles between side population cells, know to be enriched in cancer stem cells, and nonside population cells, which are depleted in cancer stem cells, for two breast cancer cell lines, MCF7 and MDA-MB231. Almost 900 proteins were quantified, and several important proteins in cell cycle control and differentiation were found to be upregulated in the cancer stem cell-containing side population. Most interestingly, a splice isoform of pyruvate kinase M2 as well as peroxiredoxin 6 were found to be downregulated. The differential levels of three of these proteins, thymosin beta4 (TB4), proliferation-associated protein 2G4, and SIAH-interacting protein, were validated using Western blot. Furthermore, functional validation provided clear evidence that elevated TB4 expression contributes to drug resistance in the stem cell population. Small interfering RNA silencing of TB4 led to a loss of chemoresistance in two separate breast cancer populations. These proteins likely contribute to resistance in the cancer stem cell-containing side population, and their altered expression in a tumor causes clinical resistance to chemotherapy. The ability to perform quantitative mass spectrometry has enabled the identification of a series of proteins that could serve as future therapeutic targets.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , Regulação Neoplásica da Expressão Gênica , Espectrometria de Massas/métodos , Células-Tronco Neoplásicas/citologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Ensaios de Seleção de Medicamentos Antitumorais/instrumentação , Feminino , Humanos , Camundongos , Camundongos SCID , Proteínas Nucleares , Peroxirredoxina VI/biossíntese , Piruvato Quinase/biossíntese , Proteínas de Ligação a RNA , Timosina/biossíntese
16.
Materials (Basel) ; 12(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554197

RESUMO

In this study, femtosecond laser-induced sub-micrometer structures are generated to modify polyethylene (PE) surface topographies. These surfaces were subjected to bacterial colonization studies with Escherichia coli and Staphylococcus aureus as test strains. The results reveal that the nanostructures do not influence S. aureus coverage, while the adhesion of E. coli is reduced.

17.
Materials (Basel) ; 11(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762544

RESUMO

Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil.

18.
Beilstein J Nanotechnol ; 9: 3025-3038, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30591850

RESUMO

Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated illumination.

19.
J Neuroeng Rehabil ; 4: 2, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17291335

RESUMO

BACKGROUND: Gait restoration is an integral part of rehabilitation of brain lesioned patients. Modern concepts favour a task-specific repetitive approach, i.e. who wants to regain walking has to walk, while tone-inhibiting and gait preparatory manoeuvres had dominated therapy before. Following the first mobilization out of the bed, the wheelchair-bound patient should have the possibility to practise complex gait cycles as soon as possible. Steps in this direction were treadmill training with partial body weight support and most recently gait machines enabling the repetitive training of even surface gait and even of stair climbing. RESULTS: With treadmill training harness-secured and partially relieved wheelchair-mobilised patients could practise up to 1000 steps per session for the first time. Controlled trials in stroke and SCI patients, however, failed to show a superior result when compared to walking exercise on the floor. Most likely explanation was the effort for the therapists, e.g. manually setting the paretic limbs during the swing phase resulting in a too little gait intensity. The next steps were gait machines, either consisting of a powered exoskeleton and a treadmill (Lokomat, AutoAmbulator) or an electromechanical solution with the harness secured patient placed on movable foot plates (Gait Trainer GT I). For the latter, a large multi-centre trial with 155 non-ambulatory stroke patients (DEGAS) revealed a superior gait ability and competence in basic activities of living in the experimental group. The HapticWalker continued the end effector concept of movable foot plates, now fully programmable and equipped with 6 DOF force sensors. This device for the first time enables training of arbitrary walking situations, hence not only the simulation of floor walking but also for example of stair climbing and perturbations. CONCLUSION: Locomotor therapy is a fascinating new tool in rehabilitation, which is in line with modern principles of motor relearning promoting a task-specific repetitive approach. Sophisticated technical developments and positive randomized controlled trials form the basis of a growing acceptance worldwide to the benefits or our patients.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Paresia/reabilitação , Modalidades de Fisioterapia/instrumentação , Caminhada , Transtornos Neurológicos da Marcha/etiologia , Humanos , Aparelhos Ortopédicos , Paresia/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Robótica , Software , Traumatismos da Medula Espinal/complicações , Acidente Vascular Cerebral/complicações
20.
Cancer Res ; 65(12): 5027-30, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15958544

RESUMO

Cyclophosphamide is a widely used chemotherapeutic drug that was recently applied as either an antiangiogenic/antivasculogenic or an immunostimulatory agent in combination with cancer immunotherapies. It has been previously shown that cyclophosphamide augments the efficacy of antitumor immune responses by depleting CD4+ CD25+ T regulatory cells and increasing both T-lymphocyte proliferation and T memory cells. Furthermore, cyclophosphamide was shown to mediate killing of circulating endothelial progenitors. However, the molecular basis for these observations has not yet been elucidated. We show here that the cyclophosphamide-mediated inhibition of inducible nitric oxide synthase is directly linked to its immunostimulatory but not to its antivasculogenic effects. Moreover, combined application of cyclophosphamide with a novel, oral DNA vaccine targeting platelet-derived growth factor B (PDGF-B), overexpressed by proliferating endothelial cells in the tumor vasculature, not only completely inhibited the growth of different tumor types but also led to tumor rejections in mice. These findings provide a new rationale at the molecular level for the combination of chemotherapy and immunotherapy in cancer treatment.


Assuntos
Adjuvantes Imunológicos/farmacologia , Ciclofosfamida/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Animais , Vacinas Anticâncer/imunologia , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Relação Dose-Resposta Imunológica , Sinergismo Farmacológico , Feminino , Tecido Linfoide/imunologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II , Plasmocitoma/enzimologia , Plasmocitoma/imunologia , Plasmocitoma/terapia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/imunologia , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Vacinas Atenuadas/imunologia , Vacinas de DNA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA