Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nucleic Acids Res ; 52(3): 1090-1106, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38055834

RESUMO

Exonic sequences contain both protein-coding and RNA splicing information but the interplay of the protein and splicing code is complex and poorly understood. Here, we have studied traditional and auxiliary splicing codes of human exons that encode residues coordinating two essential divalent metals at the opposite ends of the Irving-Williams series, a universal order of relative stabilities of metal-organic complexes. We show that exons encoding Zn2+-coordinating amino acids are supported much less by the auxiliary splicing motifs than exons coordinating Ca2+. The handicap of the former is compensated by stronger splice sites and uridine-richer polypyrimidine tracts, except for position -3 relative to 3' splice junctions. However, both Ca2+ and Zn2+ exons exhibit close-to-constitutive splicing in multiple tissues, consistent with their critical importance for metalloprotein function and a relatively small fraction of expendable, alternatively spliced exons. These results indicate that constraints imposed by metal coordination spheres on RNA splicing have been efficiently overcome by the plasticity of exon-intron architecture to ensure adequate metalloprotein expression.


Assuntos
Cálcio , Metaloproteínas , Splicing de RNA , Zinco , Humanos , Processamento Alternativo , Éxons , Íntrons , Metaloproteínas/genética , Sítios de Splice de RNA
2.
Nucleic Acids Res ; 51(15): 8199-8216, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37309897

RESUMO

Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.


Assuntos
RNA , Partícula de Reconhecimento de Sinal , Animais , Humanos , RNA/química , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/metabolismo , Proteômica , Splicing de RNA , Primatas/genética , Elementos Alu , Conformação de Ácido Nucleico , Mamíferos/genética
3.
Br J Clin Pharmacol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958217

RESUMO

AIMS: Abiraterone treatment requires regular drug intake under fasting conditions due to pronounced food effect, which may impact patient adherence. The aim of this prospective study was to evaluate adherence to abiraterone treatment in patients with prostate cancer. To achieve this aim, an abiraterone population pharmacokinetic model was developed and patients' adherence has been estimated by comparison of measured levels of abiraterone with population model-based simulations. METHODS: A total of 1469 abiraterone plasma levels from 83 healthy volunteers collected in a bioequivalence study were analysed using a nonlinear mixed-effects model. Monte Carlo simulation was used to describe the theoretical distribution of abiraterone pharmacokinetic profiles at a dose of 1000 mg once daily. Adherence of 36 prostate cancer patients treated with abiraterone was then evaluated by comparing the real abiraterone concentration measured in each patient during follow-up visit with the theoretical distribution of profiles based on simulations. Patients whose abiraterone levels were ˂5th or ˃95th percentile of the distribution of simulated profiles were considered to be non-adherent. RESULTS: Based on this evaluation, 13 patients (36%) have been classified as non-adherent. We observed significant association (P = .0361) between richness of the breakfast and rate of non-adherence. Adherent patients reported significantly better overall condition in self-assessments (P = .0384). A trend towards a higher occurrence of adverse effects in non-adherent patients was observed. CONCLUSIONS: We developed an abiraterone population pharmacokinetic model and proposed an advanced approach to medical adherence evaluation. Due to the need for administration under fasting conditions, abiraterone therapy is associated with a relatively high rate of non-adherence.

4.
Nucleic Acids Res ; 50(10): 5493-5512, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35474482

RESUMO

Auxilliary splicing sequences in exons, known as enhancers (ESEs) and silencers (ESSs), have been subject to strong selection pressures at the RNA and protein level. The protein component of this splicing code is substantial, recently estimated at ∼50% of the total information within ESEs, but remains poorly understood. The ESE/ESS profiles were previously associated with the Irving-Williams (I-W) stability series for divalent metals, suggesting that the ESE/ESS evolution was shaped by metal binding sites. Here, we have examined splicing activities of exonic sequences that encode protein binding sites for Ca2+, a weak binder in the I-W affinity order. We found that predicted exon inclusion levels for the EF-hand motifs and for Ca2+-binding residues in nonEF-hand proteins were higher than for average exons. For canonical EF-hands, the increase was centred on the EF-hand chelation loop and, in particular, on Ca2+-coordinating residues, with a 1>12>3∼5>9 hierarchy in the 12-codon loop consensus and usage bias at codons 1 and 12. The same hierarchy but a lower increase was observed for noncanonical EF-hands, except for S100 proteins. EF-hand loops preferentially accumulated exon splits in two clusters, one located in their N-terminal halves and the other around codon 12. Using splicing assays and published crosslinking and immunoprecipitation data, we identify candidate trans-acting factors that preferentially bind conserved GA-rich motifs encoding negatively charged amino acids in the loops. Together, these data provide evidence for the high capacity of codons for Ca2+-coordinating residues to be retained in mature transcripts, facilitating their exon-level expansion during eukaryotic evolution.


Assuntos
Cálcio , Splicing de RNA , Processamento Alternativo , Sítios de Ligação/genética , Códon , Éxons , Ligação Proteica
5.
Nucleic Acids Res ; 49(5): 2460-2487, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33550394

RESUMO

Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Íntrons , Complexo Cetoglutarato Desidrogenase/genética , Animais , Cálcio/metabolismo , Evolução Molecular , Éxons , Células HEK293 , Humanos , Sequências Repetitivas Dispersas , Complexo Cetoglutarato Desidrogenase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de RNA/química , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Vertebrados/genética
6.
RNA Biol ; 18(3): 354-367, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32965162

RESUMO

Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5' splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5' splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.


Assuntos
Elementos de DNA Transponíveis , Sítios de Splice de RNA , Splicing de RNA , Alelos , Sequência de Bases , Éxons , Regulação da Expressão Gênica , Humanos , Íntrons , Mutação , Conformação de Ácido Nucleico , Análise de Sequência de RNA , Transcrição Gênica
7.
Nucleic Acids Res ; 46(12): 6166-6187, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29788428

RESUMO

PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3' splice sites (3'ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3'ss and branch points of a PUF60-dependent exon and the 3'ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3'ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.


Assuntos
Éxons , Mutação de Sentido Incorreto , Sítios de Splice de RNA , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Células HEK293 , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/deficiência , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/deficiência , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Análise de Sequência de RNA , Elementos Nucleotídeos Curtos e Dispersos , Fator de Processamento U2AF
8.
Nucleic Acids Res ; 45(1): 417-434, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-27566151

RESUMO

The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3'ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.


Assuntos
Processamento Alternativo , Éxons , Subunidades Proteicas/genética , Precursores de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética , Sequência de Aminoácidos , Sequência de Bases , Evolução Biológica , Células HEK293 , Células HeLa , Humanos , Íntrons , Subunidades Proteicas/metabolismo , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/metabolismo
9.
Nucleic Acids Res ; 45(4): 2051-2067, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27683217

RESUMO

The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.


Assuntos
Splicing de RNA , Spliceossomos/metabolismo , Fator de Processamento U2AF/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Humanos , Íntrons , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Tropomiosina/metabolismo
10.
Gen Physiol Biophys ; 37(3): 299-307, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29589835

RESUMO

SNC80 was designed as a highly selective nonpeptide delta opioid receptor (DOR) agonist. Antidepressant-like and antinociceptive effects of this compound were demonstrated in animal models. Naltrindole was synthetized as a highly selective DOR antagonist. Its antitussive and antinociceptive effects were reported. Observed effects of SNC80 and naltrindole may be accompanied by changes in neuronal excitability including modulation of voltage-dependent ion channels. We investigated possible DOR-independent modulation of neuronal sodium, calcium and potassium currents by both agents. NG108-15 cells lacking expression of DOR protein were used as model of neuronal cells. Cells were differentiated into neuronal phenotype by exposure to dibutyryl cyclic-AMP (dbcAMP). Lack of DORs expression in NG108-15 cells and the presence of DOR expression in brain and neuronal cultures were demonstrated by Western blot analysis. Both SNC80 and naltrindole exerted low to moderate modulatory effects on voltage-dependent ion currents. SNC80 weakly inhibited sodium current, potentiated calcium current, and did not act on potassium channels. Naltrindole inhibited sodium current, did not act on calcium current and inhibited potassium current at a high concentration. Such effects should be taken into account when these compounds are used for investigation of DOR-mediated signaling pathways.


Assuntos
Benzamidas/farmacologia , Canais Iônicos/metabolismo , Naltrexona/análogos & derivados , Piperazinas/farmacologia , Receptores Opioides delta/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Naltrexona/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inibidores , Canais de Sódio/metabolismo
11.
Nucleic Acids Res ; 43(7): 3747-63, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25779042

RESUMO

The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3' splice site (3'ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3'ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3'UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.


Assuntos
Éxons , Proteínas Nucleares/genética , Splicing de RNA , Ribonucleoproteínas/genética , Análise de Sequência de RNA , Células HEK293 , Humanos , Fator de Processamento U2AF
12.
Nucleic Acids Res ; 42(12): 8161-73, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24944197

RESUMO

Splice-switching oligonucleotides (SSOs) have been widely used to inhibit exon usage but antisense strategies that promote removal of entire introns to increase splicing-mediated gene expression have not been developed. Here we show reduction of INS intron 1 retention by SSOs that bind transcripts derived from a human haplotype expressing low levels of proinsulin. This haplotype is tagged by a polypyrimidine tract variant rs689 that decreases the efficiency of intron 1 splicing and increases the relative abundance of mRNAs with extended 5' untranslated region (5' UTR), which curtails translation. Co-expression of haplotype-specific reporter constructs with SSOs bound to splicing regulatory motifs and decoy splice sites in primary transcripts revealed a motif that significantly reduced intron 1-containing mRNAs. Using an antisense microwalk at a single nucleotide resolution, the optimal target was mapped to a splicing silencer containing two pseudoacceptor sites sandwiched between predicted RNA guanine (G) quadruplex structures. Circular dichroism spectroscopy and nuclear magnetic resonance of synthetic G-rich oligoribonucleotide tracts derived from this region showed formation of a stable parallel 2-quartet G-quadruplex on the 3' side of the antisense retention target and an equilibrium between quadruplexes and stable hairpin-loop structures bound by optimal SSOs. This region interacts with heterogeneous nuclear ribonucleoproteins F and H that may interfere with conformational transitions involving the antisense target. The SSO-assisted promotion of weak intron removal from the 5' UTR through competing noncanonical and canonical RNA structures may facilitate development of novel strategies to enhance gene expression.


Assuntos
Quadruplex G , Íntrons , Oligonucleotídeos Antissenso/química , Proinsulina/genética , Splicing de RNA , Regiões 5' não Traduzidas , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , RNA Helicases DEAD-box/antagonistas & inibidores , Humanos , RNA/química , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
RNA Biol ; 12(1): 54-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826413

RESUMO

Splice-site selection is controlled by secondary structure through sequestration or approximation of splicing signals in primary transcripts but the exact role of even the simplest and most prevalent structural motifs in exon recognition remains poorly understood. Here we took advantage of a single-hairpin exon that was activated in a mammalian-wide interspersed repeat (MIR) by a mutation stabilizing a terminal triloop, with splice sites positioned close to each other in a lower stem of the hairpin. We first show that the MIR exon inclusion in mRNA correlated inversely with hairpin stabilities. Employing a systematic manipulation of unpaired regions without altering splice-site configuration, we demonstrate a high correlation between exon inclusion of terminal tri- and tetraloop mutants and matching tri-/tetramers in splicing silencers/enhancers. Loop-specific exon inclusion levels and enhancer/silencer associations were preserved across primate cell lines, in 4 hybrid transcripts and also in the context of a distinct stem, but only if its loop-closing base pairs were shared with the MIR hairpin. Unlike terminal loops, splicing activities of internal loop mutants were predicted by their intramolecular Watson-Crick interactions with the antiparallel strand of the MIR hairpin rather than by frequencies of corresponding trinucleotides in splicing silencers/enhancers. We also show that splicing outcome of oligonucleotides targeting the MIR exon depend on the identity of the triloop adjacent to their antisense target. Finally, we identify proteins regulating MIR exon recognition and reveal a distinct requirement of adjacent exons for C-terminal extensions of Tra2α and Tra2ß RNA recognition motifs.


Assuntos
Éxons , Sequências Repetidas Invertidas , Mamíferos/genética , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Splicing de RNA
14.
Nucleic Acids Res ; 39(16): 7077-91, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21609956

RESUMO

GC 5' splice sites (5'ss) are present in ∼1% of human introns, but factors promoting their efficient selection are poorly understood. Here, we describe a case of X-linked agammaglobulinemia resulting from a GC 5'ss activated by a mutation in BTK intron 3. This GC 5'ss was intrinsically weak, yet it was selected in >90% primary transcripts in the presence of a strong and intact natural GT counterpart. We show that efficient selection of this GC 5'ss required a high density of GAA/CAA-containing splicing enhancers in the exonized segment and was promoted by SR proteins 9G8, Tra2ß and SC35. The GC 5'ss was efficiently inhibited by splice-switching oligonucleotides targeting either the GC 5'ss itself or the enhancer. Comprehensive analysis of natural GC-AG introns and previously reported pathogenic GC 5'ss showed that their efficient activation was facilitated by higher densities of splicing enhancers and lower densities of silencers than their GT 5'ss equivalents. Removal of the GC-AG introns was promoted to a minor extent by the splice-site strength of adjacent exons and inhibited by flanking Alu repeats, with the first downstream Alus located on average at a longer distance from the GC 5'ss than other transposable elements. These results provide new insights into the splicing code that governs selection of noncanonical splice sites.


Assuntos
Agamaglobulinemia/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Sítios de Splice de RNA , Tirosina Quinase da Agamaglobulinemia , Linhagem Celular , Humanos , Sequências Repetitivas Dispersas , Íntrons , Oligonucleotídeos Antissenso , Mutação Puntual , Proteínas Tirosina Quinases/genética , Splicing de RNA , Sequências Reguladoras de Ácido Ribonucleico
15.
Int J Pharm ; 622: 121854, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35623488

RESUMO

The aim of this study was to improve rivaroxaban water-solubility by cocrystal preparation and to understand this process. The screening with water-soluble coformers was performed via both mechanochemical and solution-mediated techniques. Two cocrystals of rivaroxaban with malonic acid and oxalic acid were prepared, and the structure of the cocrystal with oxalic acid was solved. Both cocrystals exhibit improved dissolution properties. The mechanism of the supersaturation maintenance was studied by in-situ Raman spectroscopy. The transformation into rivaroxaban dihydrate was identified as the critical step in the improved dissolution properties of both cocrystals. Moreover, the transformation kinetics and solubilization effects of the coformers were identified as responsible for the differences in the dissolution behavior of the cocrystals. In-vivo experiments proved that the use of cocrystal instead of form I of free API helped to increase the bioavailability ofrivaroxaban.


Assuntos
Rivaroxabana , Água , Cristalização , Ácido Oxálico , Solubilidade , Água/química , Difração de Raios X
16.
Pharmaceutics ; 14(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336017

RESUMO

One of the major concerns for all in vivo experiments is intra- and inter-subject variability, which can be a great source of inaccuracy. The aim of this study is, therefore, to estimate the ability of parallel vs. cross-over design studies in order to describe the relative pharmacokinetic performance of the studied drug formulations. We analyzed the data from a drug development program that examined the performance of innovative abiraterone acetate formulations against the identical reference product in three stages. In stages 1-3, groups A-F were dosed with the reference product once in a parallel manner. Stage 4 was performed to evaluate the intra-individual variability (IIV) by repeated administration of the reference product to the same animals. Although the geometric mean (90% CI) values of abiraterone AUClast in groups A-F were similar to the IIV group (24.36 (23.79-41.00) vs. 26.29 (20.56-47.00) mg/mL·min·g), the results generated in the isolated parallel groups provided imprecise estimates of the true AUClast values ranging from 9.62 to 44.62 mg/mL·min·g due to chance. Notably, in 4 out of 15 possible pair comparisons between the parallel groups, the confidence intervals did not include 100%, which is the true ratio for all comparisons tested after identical formulation administration to all groups. A cross-over design can significantly improve the methodology in short-term comparative pre-clinical pharmacokinetic studies, and can provide more precise and accurate results in comparison to more traditional pre-clinical study designs.

17.
Hum Mutat ; 32(4): 436-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21309043

RESUMO

Missense, nonsense, and translationally silent mutations can inactivate genes by altering the inclusion of mutant exons in mRNA, but their overall frequency among disease-causing exonic substitutions is unknown. Here, we have tested missense and silent mutations deposited in the BRCA1 mutation databases of unclassified variants for their effects on exon inclusion. Analysis of 21 BRCA1 variants using minigene assays revealed a single exon-skipping mutation c.231G>T. Comprehensive mutagenesis of an adjacent 12-nt segment showed that this silent mutation resulted in a higher level of exon skipping than the 35 other single-nucleotide substitutions. Exon inclusion levels of mutant constructs correlated significantly with predicted splicing enhancers/silencers, prompting the development of two online utilities freely available at http://www.dbass.org.uk. EX-SKIP quickly estimates which allele is more susceptible to exon skipping, whereas HOT-SKIP examines all possible mutations at each exon position and identifies candidate exon-skipping positions/substitutions. We demonstrate that the distribution of exon-skipping and disease-associated substitutions previously identified in coding regions was biased toward top-ranking HOT-SKIP mutations. Finally, we show that proteins 9G8, SC35, SF2/ASF, Tra2, and hnRNP A1 were associated with significant alterations of BRCA1 exon 6 inclusion in the mRNA. Together, these results facilitate prediction of exonic substitutions that reduce exon inclusion in mature transcripts.


Assuntos
Proteína BRCA1/genética , Éxons , Mutação , Splicing de RNA , Sequências Reguladoras de Ácido Ribonucleico , Processamento Alternativo , Proteína BRCA1/metabolismo , Sequência de Bases , Feminino , Células HeLa , Humanos , Modelos Genéticos , Dados de Sequência Molecular , RNA Mensageiro/metabolismo
18.
Br J Pharmacol ; 178(23): 4663-4674, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34365639

RESUMO

BACKGROUND AND PURPOSE: Lymphatic transport of drugs after oral administration is an important mechanism for absorption of highly lipophilic compounds. Direct measurement in lymph duct cannulated animals is the gold standard method, but non-invasive cycloheximide chylomicron flow blocking method has gained popularity recently. However, concerns about its reliability have been raised. The aim of this work was to investigate the validity of cycloheximide chylomicron flow blocking method for the evaluation of lymphatic transport using model compounds with high to very high lipophilicity, that is, abiraterone and cinacalcet. EXPERIMENTAL APPROACH: Series of pharmacokinetic studies were conducted with abiraterone acetate and cinacalcet hydrochloride after enteral/intravenous administration to intact, lymph duct cannulated and/or cycloheximide pre-treated rats. KEY RESULTS: Mean total absolute oral bioavailability of abiraterone and cinacalcet was 7.0% and 28.7%, respectively. There was a large and significant overestimation of the lymphatic transport extent by the cycloheximide method. Mean relative lymphatic bioavailability of abiraterone and cinacalcet in cycloheximide method was 28-fold and 3-fold higher than in cannulation method, respectively. CONCLUSION AND IMPLICATIONS: Cycloheximide chylomicron flow blocking method did not provide reliable results on lymphatic absorption and substantially overestimated lymphatic transport for both molecules, that is, abiraterone and cinacalcet. This non-invasive method should not be used for the assessment of lymphatic transport and previously obtained data should be critically revised.


Assuntos
Quilomícrons , Absorção Intestinal , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Quilomícrons/metabolismo , Cicloeximida/farmacologia , Preparações Farmacêuticas , Ratos , Reprodutibilidade dos Testes
19.
Hum Genet ; 128(4): 383-400, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20628762

RESUMO

Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.


Assuntos
Íntrons/genética , Proinsulina/genética , Sítios de Splice de RNA/genética , Splicing de RNA , Regiões 5' não Traduzidas/genética , Alelos , Sequência de Bases , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 1/genética , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Haplótipos , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Biossíntese de Proteínas/genética , Interferência de RNA , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF
20.
Cancers (Basel) ; 12(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664474

RESUMO

U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3' splice sites (3'ss). Both proteins preferentially bind uridine-rich sequences upstream of 3'ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3'ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3'ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3'ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA