Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 25(5): 1704-1716, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30806027

RESUMO

Vast amounts of carbon are bound in both active layer and permafrost soils in the Arctic. As a consequence of climate warming, the depth of the active layer is increasing in size and permafrost soils are thawing. We hypothesize that pulses of biogenic volatile organic compounds are released from the near-surface active layer during spring, and during late summer season from thawing permafrost, while the subsequent biogeochemical processes occurring in thawed soils also lead to emissions. Biogenic volatile organic compounds are reactive gases that have both negative and positive climate forcing impacts when introduced to the Arctic atmosphere, and the knowledge of their emission magnitude and pattern is necessary to construct reliable climate models. However, it is unclear how different ecosystems and environmental factors such as drainage conditions upon permafrost thaw affect the emission and compound composition. Here we show that incubations of frozen B horizon of the active layer and permafrost soils collected from a High Arctic heath and fen release a range of biogenic volatile organic compounds upon thaw and during subsequent incubation experiments at temperatures of 10°C and 20°C. Meltwater drainage in the fen soils increased emission rates nine times, while having no effect in the drier heath soils. Emissions generally increased with temperature, and emission profiles for the fen soils were dominated by benzenoids and alkanes, while benzenoids, ketones, and alcohols dominated in heath soils. Our results emphasize that future changes affecting the drainage conditions of the Arctic tundra will have a large influence on volatile emissions from thawing permafrost soils - particularly in wetland/fen areas.


Assuntos
Mudança Climática , Gases/análise , Pergelissolo/química , Compostos Orgânicos Voláteis/análise , Água/análise , Regiões Árticas , Monitoramento Ambiental , Estações do Ano , Solo/química , Tundra
2.
Nat Commun ; 9(1): 3412, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143640

RESUMO

Warming in the Arctic accelerates thawing of permafrost-affected soils, which leads to a release of greenhouse gases to the atmosphere. We do not know whether permafrost thaw also releases non-methane volatile organic compounds that can contribute to both negative and positive radiative forcing on climate. Here we show using proton transfer reaction-time of flight-mass spectrometry that substantial amounts of ethanol and methanol and in total 316 organic ions were released from Greenlandic permafrost soils upon thaw in laboratory incubations. We demonstrate that the majority of this release is taken up in the active layer above. In an experiment using 14C-labeled ethanol and methanol, we demonstrate that these compounds are consumed by microorganisms. Our findings highlight that the thawing permafrost soils are not only a considerable source of volatile organic compounds but also that the active layer regulates their release into the atmosphere.


Assuntos
Pergelissolo , Clima , Etanol/metabolismo , Metanol/metabolismo , Microbiologia do Solo
3.
Sci Rep ; 7(1): 16035, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167456

RESUMO

Future increases in temperature and cloud cover will alter plant growth and decomposition of the large carbon pools stored in Arctic soils. A better understanding of interactions between above- and belowground processes and communities of plants and microorganisms is essential for predicting Arctic ecosystem responses to climate change. We measured ecosystem CO2 fluxes during the growing season for seven years in a dwarf-shrub tundra in West Greenland manipulated with warming and shading and experiencing a natural larvae outbreak. Vegetation composition, soil fungal community composition, microbial activity, and nutrient availability were analyzed after six years of treatment. Warming and shading altered the plant community, reduced plant CO2 uptake, and changed fungal community composition. Ecosystem carbon accumulation decreased during the growing season by 61% in shaded plots and 51% in warmed plots. Also, plant recovery was reduced in both manipulations following the larvae outbreak during the fifth treatment year. The reduced plant recovery in manipulated plots following the larvae outbreak suggests that climate change may increase tundra ecosystem sensitivity to disturbances. Also, plant community changes mediated via reduced light and reduced water availability due to increased temperature can strongly lower the carbon sink strength of tundra ecosystems.


Assuntos
Mariposas , Tundra , Animais , Dióxido de Carbono/análise , Sequestro de Carbono , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA