RESUMO
Inflammation and pain are consequences of injuries or diseases that affect a large number of people. This study aims to evaluate the effect of acupuncture and laserpuncture on nociception and inflammation in mice compared to the effects of morphine and dexamethasone. 140 male Swiss mice were used. Treatment with acupuncture and laserpuncture were performed at the acupoints LI11, ST36, GB34, and BL60 in mice. To evaluate the effect of acupuncture and laserpuncture on nociception, the hot plate test and intraplantar formalin injection were used. The effect of acupuncture and laserpuncture on the inflammation was evaluated through carrageenan-induced paw edema. Thermographic analysis was also applied to evaluate the anti-inflammatory effects. An antinociceptive effect (≈57%) was observed in treatments with acupuncture and laserpuncture, equivalent to the effect of morphine. Laserpuncture and acupuncture decreased paw edema by ≈25%. Acupuncture had an effect equivalent to dexamethason, basides reducing the neurogenic phase by 35% and the inflammatory phase in formalin-induced nociception by 40%, equivalent to the effects of morphine. In thermographic analysis, acupuncture, laserpuncture, morphine, and negative control had paw temperature of ≈27 °C, while formalin treatment was 31°C. Acupuncture and laserpuncture proved to be effective therapies for the treatment of inflammatory and painful processes.
Assuntos
Terapia por Acupuntura , Nociceptividade , Camundongos , Masculino , Animais , Inflamação/tratamento farmacológico , Carragenina , Edema/induzido quimicamente , Formaldeído/farmacologia , Derivados da Morfina/efeitos adversos , Analgésicos/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Eugenia brasiliensis Lam. (Myrtaceae) is a Brazilian tree distributed throughout Atlantic rain forest, since Bahia until Santa Catarina state, and is popularly known as "grumixaba, grumixameira, cumbixaba, ibaporoiti, and cereja-brasileira". The bark and leaves of Eugenia brasiliensis are used in folk medicine as adstringent, diuretic, energizing, anti-rheumatic and anti-inflammatory. This study aimed at investigating the chemical composition, antinociceptive and anti-inflammatory effect of the hydroalcoholic extract of Eugenia brasiliensis (HEEb). MATERIAL AND METHODS: Chemical composition of the HEEb was determined by High Performance Liquid Chromatography/ESI-Mass Spectrometry (HPLC-ESI-MS/MS). The antinociceptive and anti-inflammatory effects of HEEb (30-300â¯mg/kg) was verified in mice after oral administration by intra-gastric gavage (i.g.) 60â¯min prior to experimentation. It was investigated whether HEEb decreases visceral pain and leukocyte migration induced by an intraperitoneal (i.p.) injection of acetic acid (0.6%). We also evaluated whether HEEb decreases nociceptive behavior induced by formalin (including paw edema and temperature), prostaglandin E2 (PGE2), histamine, and compound 48/80. Finally, we evaluated the effect of HEEb in the chronic inflammatory (mechanical and thermal hypersensitivity) pain induced by complete Freund's adjuvant (CFA), as well as quantifying the concentration of the pro-inflammatory cytokines TNF-α and IL-6 in the paw by ELISA method. RESULTS: Seven polyphenols were identified in HEEb by HPLC-ESI-MS/MS analysis. HEEb treatment alleviated nocifensive behavior and leukocyte migration caused by acetic acid. Moreover, HEEb also reduced the inflammatory pain and paw temperature induced by formalin, as well as it decreased nociceptive behavior induced by histamine and compound 48/80. Finally, acute and repeated treatment of animals with HEEb (100â¯mg/kg, i.g.) markedly reduced the mechanical and thermal (heat) hypersensitivity, besides decrease paw edema and temperature induced by CFA, and this effect was evident until the day 7. Moreover, repeated treatment with HEEb (100â¯mg/kg, i.g.) significantly reduced the levels of IL-6 and TNF-α in the paw when compared to the CFA group. CONCLUSIONS: This is the first report showing that HEEb presents antinociceptive and anti-inflammatory effects in the visceral and somatic inflammatory pain in mice, possibly involving the inhibition of histamine receptors and pro-inflammatory cytokines activated pathways. Our results are of interest because they support the use of Eugenia brasiliensis as a potential source of phytomedicine for inflammatory diseases and pain.