Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Horm Behav ; 152: 105359, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37058919

RESUMO

Corticosterone (CORT), the main glucocorticoid in birds, regulates physiological and behavioral traits linked to predictable and unpredictable environmental fluctuations (i.e., stressors). Baseline and stress-induced CORT concentrations are known to fluctuate seasonally, linked to life history stages (LHS) such as breeding, molt, and wintering stage. These variations have been relatively well described in North American birds, but poorly addressed in neotropical species. To fill this gap, we explored how baseline and stress-induced CORT variation by LHS was affected by seasonality and environmental heterogeneity (i.e., frequency of unpredictable events such as droughts, flashfloods, etc) within the Neotropics using two approaches. First, we reviewed all currently available data about CORT concentrations for neotropical bird species. Second, we performed an in-depth analysis comparing the CORT responses of the two most common species of the Zonotrichia genus from North and South America (Z. leucophrys and Z. capensis, respectively) and their subspecies to seasonality and environmental heterogeneity. These species have been analyzed with the same methodology, allowing for an in-depth comparison of CORT variations. Despite scant data on neotropical bird species, we observed overlap between molt and breeding, and lower fluctuations of CORT among LHS. These patterns would be considered atypical compared to those described for North temperate species. Further, we found no significant associations between environmental heterogeneity and the stress-responses. In Zonotrichia we observed a positive association between baseline and stress-induced concentrations of CORT and latitude. We also observed differences by LHS. Both baseline and stress-induced CORT concentrations were higher during breeding and lower during molt. In addition, for both species, the overall pattern of seasonal modulation of stress response was heavily influenced by the migration strategy, with long-distance migrants showing significantly higher stress-induced CORT levels. Our results highlight the need for more data collection in the Neotropics. Comparative data would shed further light on the sensitivity of the adrenocortical response to stress under different scenarios of environmental seasonality and unpredictability.


Assuntos
Corticosterona , Passeriformes , Animais , Estações do Ano , Glucocorticoides , Passeriformes/fisiologia , Estágios do Ciclo de Vida , Estresse Fisiológico/fisiologia
2.
Gen Comp Endocrinol ; 333: 114166, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402244

RESUMO

The phenotypes observed in urban and rural environments are often distinct; however, it remains unclear how these novel urban phenotypes arise. Hormone-mediated maternal effects likely play a key role in shaping developmental trajectories of offspring in different environments. Thus, we measured corticosterone (Cort) and testosterone (T) concentrations in eggs across the laying sequence in addition to Cort concentrations in nestling and adult female house wrens (Troglodytes aedon) at one urban and one rural site. We found that egg T concentrations were not different between birds from urban and rural sites. However, across all life stages (egg, nestling, and adult female), Cort concentrations were higher at the urban site. Additionally, urban nestling Cort concentrations, but not rural, correlated with fine-scale urban density scores. Furthermore, rural egg volume increased over the laying sequence, but urban egg volume leveled off mid-sequence, suggesting either that urban mothers are resource limited or that they are employing a different brood development strategy than rural mothers. Our study is one of the first to show that egg hormone concentrations differ in an urban environment with differences persisting in chick development and adult life stages. We suggest that maternal endocrine programing may shape offspring phenotypes in urban environments and are an overlooked yet important aspect underlying mechanisms of urban evolution.


Assuntos
Aves Canoras , Urbanização , Animais , Feminino , Ovos , Corticosterona , Fenótipo , Gema de Ovo
3.
Oecologia ; 199(3): 549-562, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35732927

RESUMO

Circulating sex steroid concentrations vary dramatically across the year in seasonally breeding animals. The ability of circulating sex steroids to effect muscle function can be modulated by changes in intracellular expression of steroid metabolizing enzymes (e.g., 5α-reductase type 2 and aromatase) and receptors. Together, these combined changes in plasma hormones, metabolizing enzymes and receptors allow for seasonally appropriate changes in skeletal muscle function. We tested the hypothesis that gene expression of sex steroid metabolizing enzymes and receptors would vary seasonally in skeletal muscle and these changes would differ between a migrant and resident life history strategy. We quantified annual changes in plasma testosterone and gene expression in pectoralis and gastrocnemius skeletal muscles using quantitative polymerase chain reaction (qPCR) in free-living migrant (Zonotrichia leucophrys gambelii) and resident (Z. l. nuttalli) subspecies of white-crowned sparrow during breeding, pre-basic molt, and wintering life history stages. Pectoralis muscle profile was largest in migrants during breeding, while residents maintained large muscle profiles year-round. Circulating testosterone peaked during breeding in both subspecies. Pectoralis muscle androgen receptor mRNA expression was lower in females of both subspecies during breeding. Estrogen receptor-α expression was higher in the pectoralis muscle, but not gastrocnemius, of residents throughout the annual cycle when compared to migrants. Pectoralis aromatase expression was higher in resident males compared to migrant males. No differences were observed for 5α-reductase 2. Between these two subspecies, patterns of plasma testosterone and androgen receptors appear to be conserved, however estrogen receptor gene expression appears to have diverged.


Assuntos
Pardais , Animais , Aromatase/genética , Aromatase/metabolismo , Feminino , Expressão Gênica , Masculino , Músculo Esquelético , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Estações do Ano , Pardais/genética , Testosterona/metabolismo
4.
Horm Behav ; 127: 104884, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33171133

RESUMO

Corticosterone affects physiology and behavior both during normal daily processes but also in response to environmental challenges and is known to mediate life history trade-offs. Many studies have investigated patterns of corticosterone production at targeted times of year, while ignoring underlying annual profiles. We aimed to understand the annual regulation of hypothalamic-pituitary-adrenal (HPA) axis function of both migrant (Zonotrichia leucophrys gambelii; n = 926) and resident (Z. l. nutalli; n = 688) subspecies of white-crowned sparrow and how it is influenced by environmental conditions - wind, precipitation, and temperature. We predicted that more dramatic seasonal changes in baseline and stress-induced corticosterone would occur in migrants to precisely time the onset of breeding and cope with environmental extremes on their arctic breeding grounds, while changes in residents would be muted as they experience a more forgiving breeding schedule and comparatively benign environmental conditions in coastal California. During the course of a year, the harshest conditions were experienced the summer breeding grounds for migrants, at which point they had higher corticosterone levels compared to residents. For residents, the winter months coincided with harshest conditions at which point they had higher corticosterone levels than migrants. For both subspecies, corticosterone tended to rise as environmental conditions became colder and windier. We found that the annual maxima in stress-induced corticosterone occurred prior to egg lay for all birds except resident females. Migrants had much higher baseline and acute stress-induced corticosterone during breeding compared to residents; where in a harsher environment the timing of the onset of reproduction is more critical because the breeding season is shorter. Interestingly, molt was the only stage within the annual cycle in which subspecies differences were absent suggesting that a requisite reduction in corticosterone may have to be met for feather growth. These data suggest that modulation of the HPA axis is largely driven by environmental factors, social cues, and their potential interactions with a genetic program.


Assuntos
Córtex Suprarrenal/fisiologia , Migração Animal/fisiologia , Estações do Ano , Pardais/fisiologia , Animais , Regiões Árticas , Corticosterona/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Muda/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Reprodução/fisiologia , Estresse Fisiológico/fisiologia , Temperatura
5.
J Exp Biol ; 224(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34553762

RESUMO

Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens.


Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Corticosterona , Havaí , Humanos , Imunidade Inata , Masculino
6.
Gen Comp Endocrinol ; 303: 113701, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359801

RESUMO

Capture-restraint is often used to investigate the acute hypothalamic-pituitary-adrenal axis (HPA) response to stress in wild and captive animals through the production of glucocorticoids. Although this approach is useful for understanding changes in glucocorticoids, it overlooks potential changes in the complex regulatory systems associated with the glucocorticoid response, including genomic receptors, steroid metabolizing enzymes, carrier proteins, and downstream target proteins (e.g. gonadotropin-inhibitory hormone; GnIH). The present study in captive male white-crowned sparrows (Zonotrichia leucophrys) tests the hypothesis that corticosteroid receptors (mineralocorticoid - MR and glucocorticoid - GR), 11ß-hydroxysteroid dehydrogenase 1 (11ßHSD1) and 2 (11ßHSD2), corticosteroid binding globulin (CBG), and GnIH undergo rapid changes in expression to mediate the glucocorticoid response to acute stress. To determine dynamic changes in gene mRNA expression in the hippocampus, hypothalamus, pituitary gland, and liver, birds were sampled within 3 min of entering the room and after 10, 30, and 60 min of capture restraint stress in a cloth bag. Restraint stress handling increased CBG and decreased GnIH mRNA expression in the liver and hypothalamus, respectively. MR, GR, 11ßHSD1, and 11ßHSD2 mRNA expression in the brain, pituitary gland, and liver did not change. No correlations were found between gene expression and baseline or stress-induced plasma corticosterone levels. No rapid changes of MR, GR, 11ßHSD1, and 11ßHSD2 mRNA expression during a standardized acute restraint protocol suggests that tissue level sensitivity may remain constant during acute stressors. However, the observed rise in CBG mRNA expression could act to facilitate transport to target tissues or buffer the rise in circulating glucocorticoids. Further studies on tissue specific sensitivity are warranted.


Assuntos
Pardais , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Corticosterona , Expressão Gênica , Sistema Hipotálamo-Hipofisário , Masculino , Sistema Hipófise-Suprarrenal , Receptores de Glucocorticoides/genética , Receptores de Esteroides , Pardais/genética
7.
Gen Comp Endocrinol ; 308: 113784, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862049

RESUMO

Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.


Assuntos
Malária Aviária , Aves Canoras , Animais , Corticosterona , Feminino , Havaí , Masculino , Prolactina , Testosterona
8.
J Exp Biol ; 223(Pt 1)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796607

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis is under complex regulatory control at multiple levels. Enzymatic regulation plays an important role in both circulating levels of glucocorticoids and target tissue exposure. Three key enzyme pathways are responsible for the immediate control of glucocorticoids. De novo synthesis of glucocorticoid from cholesterol involves a multistep enzymatic cascade. This cascade terminates with 11ß-hydroxylase, responsible for the final conversion of 11-deoxy precursors into active glucocorticoids. Additionally, 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) controls regeneration of glucocorticoids from inactive metabolites, providing a secondary source of active glucocorticoids. Localized inactivation of glucocorticoids is under the control of Type 2 11ß-HSD (11ß-HSD2). The function of these enzymes is largely unexplored in wild species, particularly songbirds. Here, we investigated the contribution of both clearance and generation of glucocorticoids to regulation of the hormonal stress response via the use of pharmacological antagonists. Additionally, we mapped 11ß-HSD gene expression. We found 11ß-HSD1 primarily in liver, kidney and adrenal glands, although it was detectable across all tissue types. 11ß-HSD2 was predominately expressed in the adrenal glands and kidney with moderate gonadal and liver expression. Inhibition of glucocorticoid generation by metyrapone was found to decrease levels peripherally, while both peripheral and central administration of the 11ß-HSD2 inhibitor DETC resulted in elevated concentrations of corticosterone. These data suggest that during the stress response, peripheral antagonism of the 11ß-HSD system has a greater impact on circulating glucocorticoid levels than central control. Further studies should aim to elucidate the respective roles of the 11ß-HSD and 11ß-hydroxylase enzymes.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Corticosterona/sangue , Aves Canoras/fisiologia , Estresse Fisiológico/fisiologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Masculino
9.
Horm Behav ; 97: 31-38, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030109

RESUMO

Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.


Assuntos
Encéfalo/metabolismo , Comunicação , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animais , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Passeriformes/metabolismo , Hipófise/metabolismo
10.
J Anim Ecol ; 87(5): 1364-1382, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29741769

RESUMO

The timing and duration of life-history stages (LHSs) within the annual cycle can be affected by local environmental cues which are integrated through endocrine signalling mechanisms and changes in protein function. Most animals express a single LHS within a given period of the year because synchronous expression of LHSs is thought to be too costly energetically. However, in very rare and extremely stable conditions, breeding and moult have been observed to overlap extensively in rufous-collared sparrows (Zonotrichia capensis) living in valleys of the Atacama Desert-one of the most stable and aseasonal environments on Earth. To examine how LHS traits at different levels of organization are affected by environmental variability, we compared the temporal organization and duration of LHSs in populations in the Atacama Desert with those in the semiarid Fray Jorge National Park in the north of Chile-an extremely seasonal climate but with unpredictable droughts and heavy rainy seasons. We studied the effects of environmental variability on morphological variables related to body condition, endocrine traits and proteome. Birds living in the seasonal environment had a strict temporal division of LHSs, while birds living in the aseasonal environment failed to maintain a temporal division of LHSs resulting in direct overlap of breeding and moult. Further, higher circulating glucocorticoids and androgen concentrations were found in birds from seasonal compared to aseasonal populations. Despite these differences, body condition variables and protein expression were not related to the degree of seasonality but rather showed a strong relationship with hormone levels. These results suggest that animals adjust to their environment through changes in behavioural and endocrine traits and may be limited by less labile traits such as morphological variables or expression of specific proteins under certain circumstances. These data on free-living birds shed light on how different levels of life-history organization within an individual are linked to increasing environmental heterogeneity.


Assuntos
Pardais , Animais , Chile , Estágios do Ciclo de Vida , Proteoma , Estações do Ano
11.
Gen Comp Endocrinol ; 267: 183-192, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031732

RESUMO

Severe weather events are increasing worldwide because of climate change. To cope with severe weather events, vertebrates rely on the stress response which is activated by the hypothalamic-pituitary adrenal (HPA) axis to adjust physiology and behavior. Previous studies have detailed changes in baseline concentrations of the stress hormone corticosterone during a single storm event, but little data exists on how stress physiology and body condition are adjusted as the storm progresses across multiple days. This represents a serious gap in our understanding of how birds respond physiologically over the duration of a storm. We documented arctic snowstorms that occurred over five consecutive years that were endured by Lapland longspurs (Calcarius lapponicus; 2012-2016) and in three consecutive years by white-crowned sparrows (Zonotrichia leucophrys gambelii; 2014-2016). Data were collected on storm-free days, during snowstorms ranging in length from 1 to 3 days, and the day immediately following a snowstorm. The specific aims were to understand how stress physiology, measured at baseline and in response to restraint handling, and body condition changed over multiple days of the storm, and if these responses were consistent across years. Snowstorms did not affect baseline corticosterone concentrations for either species except for female Lapland longspurs and male white-crowned sparrows in 2014. Lapland longspurs, regardless of sex, increased stress-induced (restraint handling) corticosterone in response to snowstorms in all years but 2013, which was characterized by unusually harsh conditions. Both sexes of White-crowned sparrows showed a significant increase in the stress-induced levels of corticosterone during snowstorms in one of the three years of the study. Stress-induced corticosterone concentrations were only different across each day of the storm in one year of the study for Lapland longspurs. Changes in fat and body mass were not uniform across years, but measurable increases in fat stores and body mass were detected in males of both species during the first day of a snowstorm with declines typically occurring by the second day. Our study showed that severe weather events often caused rapid increases in HPA axis activity and body condition, but these profiles are likely dependent upon ecological and environmental context within the breeding season.


Assuntos
Cruzamento , Neve , Aves Canoras/fisiologia , Estresse Fisiológico , Adiposidade/fisiologia , Animais , Regiões Árticas , Peso Corporal , Corticosterona/sangue , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/fisiologia , Restrição Física , Aves Canoras/sangue
12.
Am Nat ; 190(6): 854-859, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29166160

RESUMO

Hibernation provides a means of escaping the metabolic challenges associated with seasonality, yet the ability of mammals to prolong or reenter seasonal dormancy in response to extreme weather events is unclear. Here, we show that Arctic ground squirrels in northern Alaska exhibited sex-dependent plasticity in the physiology and phenology of hibernation in response to a series of late spring snowstorms in 2013 that resulted in the latest snowmelt on record. Females and nonreproductive males responded to the >1-month delay in snowmelt by extending heterothermy or reentering hibernation after several days of euthermy, leading to a >2-week delay in reproduction compared to surrounding years. In contrast, reproductive males neither extended nor reentered hibernation, likely because seasonal gonadal growth and development and subsequent testosterone release prevents a return to torpor. Our findings reveal intriguing differences in responses of males and females to climatic stressors, which can generate a phenological mismatch between the sexes.


Assuntos
Hibernação/fisiologia , Sciuridae/fisiologia , Alaska , Animais , Regiões Árticas , Fontes Geradoras de Energia , Feminino , Masculino , Fatores Sexuais
13.
J Exp Biol ; 220(Pt 7): 1330-1340, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183869

RESUMO

To accommodate a migratory life history, migrants express a greater number of physiological and behavioral stages per annum than residents and are thus considered to have higher finite state diversity (FSD). To investigate the physiological mechanisms and constraints associated with migration, direct comparison of two subspecies of white-crowned sparrow - migrant, Zonotrichia leucophrys gambelii, and resident, Z. l. nuttalli - were made under common garden conditions of photoperiod and housing, as birds progressed from winter through the vernal life history stages. We tested the hypothesis that migrants (higher FSD) respond differently than residents (lower FSD) to the initial predictive cue, photoperiod, to initiate and integrate the progression of vernal stages of prenuptial molt, migration and development of breeding. If differences in vernal phenology were noted, then the basis for the distinctions was considered genetic. Results indicate that (1) residents had a lower threshold to vernal photoperiod with elevations of plasma androgen, growth and development of reproductive structures preceding those of migrants; (2) only migrants displayed prenuptial molt, preparations for migration and migratory restlessness; and (3) neither baseline nor stress-induced plasma corticosterone differed across subspecies, suggesting energetic demands of the common garden were insufficient to induce a differential adrenocortical response in either subspecies, highlighting the impact of environmental conditions on corticosterone secretion. Thus, in a common garden experiment, Z. l. gambelii responds differently to the initial predictive cue, photoperiod, to initiate and execute the vernal stages of molt, migration and development of breeding in comparison to the shared stage of breeding with Z. l. nuttalli, confirming a genetic basis for the subspecies differences.


Assuntos
Migração Animal , Pardais/fisiologia , Animais , Corticosterona/sangue , Masculino , Muda , Fotoperíodo , Reprodução , Estações do Ano , Pardais/sangue
14.
Oecologia ; 185(1): 69-80, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779226

RESUMO

Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration, and intensity just as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affects vegetation phenology, while far fewer have examined how the breeding phenology of arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and white-crowned sparrows, Zonotrichia leucophrys gambelii, across five consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, including the timing of arrival on breeding grounds, territory establishment, and clutch initiation. Spring temperatures, precipitation, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover. In response, we found a significant delay in breeding-cycle phenology for both study species in 2013 relative to other study years: the first bird observed was delayed by 6-10 days, with mean arrival by 3-6 days, territory establishment by 6-13 days, and clutch initiation by 4-10 days. Further, snow cover, temperature, and precipitation during the territory establishment period were important predictors of clutch initiation dates for both species. These findings suggest that Arctic-breeding passerine communities may have the flexibility required to adjust breeding phenology in response to the increasingly extreme and unpredictable environmental conditions-although future generations may encounter conditions that exceed their current range of phenological flexibility.


Assuntos
Migração Animal/fisiologia , Estações do Ano , Aves Canoras/fisiologia , Animais , Regiões Árticas , Reprodução/fisiologia , Neve , Temperatura , Tundra , Tempo (Meteorologia)
15.
Artigo em Inglês | MEDLINE | ID: mdl-28007663

RESUMO

In birds, corticosterone (CORT), testosterone (T), and corticosteroid binding globulin (CBG) are involved in modulating the trade-off between reproduction and survival. In response to acute stress, increased total plasma CORT is a ubiquitous phenomenon while T levels can decrease, or remain unchanged. Since CORT and T bind competitively with CBG in birds, the underlying regulatory mechanisms and consequences of their dynamic interactions remain largely unknown. Here, we studied the dynamic changes of total CORT, T, and CBG, and estimated free and bound CORT and T in response to capture stress in male Eurasian tree sparrows (Passer montanus) across the nest building, egg-laying, and nestling stages. We predicted that free, bound and total hormone concentrations would increase for CORT and decrease for T in response to acute stress, and the relative magnitude of these changes would vary with life history stage. We found that baseline and stressed-induced CORT values did not vary across breeding sub-stages. However, total and bound CORT increased with stress while free remained unchanged. Baseline levels of total, free and bound T were highest during the nest building and it was the only stage in which all measures of T were affected by stress. Regardless of breeding stage or restraint stress, we did not detect a significant correlation between CORT and T. CBG was found to be mostly unoccupied by steroid hormones under stress and stress-free conditions and this likely provided an adequate buffer for changes in free levels of CORT and T during unpredictable environmental perturbations.


Assuntos
Proteínas Aviárias/sangue , Corticosterona/sangue , Pardais/sangue , Pardais/fisiologia , Testosterona/sangue , Transcortina/metabolismo , Animais , Cruzamento , China , Masculino , Estresse Fisiológico
16.
Horm Behav ; 83: 68-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27215934

RESUMO

Birds breeding at high latitudes can be faced with extreme weather events throughout the breeding season. In response to environmental perturbations, vertebrates activate the hypothalamic-pituitary-adrenal (HPA) axis and synthesize corticosterone, which promotes changes in behavior and physiology to help the animal survive. The parental care hypothesis suggests that the HPA axis activity should be downregulated during the parental stage of breeding to prevent nest abandonment. However, it is unknown what happens to HPA axis activity in response to severe weather at the transition from the pre-parental to parental stages of breeding. We sampled baseline corticosterone levels and the time course of corticosterone elevation over 60min of restraint stress and assessed body condition and fat stores in Lapland longspurs (Calcarius lapponicus) breeding in the Low Arctic in the presence and absence of snowstorms. The results showed that during the pre-parental stage, HPA axis activity was up-regulated in response to snowstorms, with corticosterone levels continuing to increase through 60min of restraint. However, once birds were parental, HPA axis activity was unaffected by snowstorms and levels peaked at 10min. Fat levels and body condition did not change in response to snowstorms but fat levels declined in males during the pre-parental stage. These data suggest that the parental care hypothesis can be applied to severe storm events; parental birds restrained the activity of the HPA axis, likely to focus on the reproductive effort that is already underway, while pre-parental birds greatly upregulated HPA axis activity in response to snowstorms to maximize self-preservation.


Assuntos
Comportamento de Nidação/fisiologia , Passeriformes/fisiologia , Reprodução/fisiologia , Estresse Fisiológico/fisiologia , Tempo (Meteorologia) , Animais , Regiões Árticas , Comportamento Animal/fisiologia , Corticosterona/fisiologia , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Sistema Hipófise-Suprarrenal/fisiologia , Estações do Ano
17.
Front Zool ; 13: 1, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26759601

RESUMO

BACKGROUND: Environmental stressors increase the secretion of glucocorticoids that in turn can shorten telomeres via oxidative damage. Modification of telomere length, as a result of adversity faced early in life, can modify an individual's phenotype. Studies in captivity have suggested a relationship between glucocorticoids and telomere length in developing individuals, however less is known about that relationship in natural populations. METHODS: In order to evaluate the effect of early environmental stressors on telomere length in natural populations, we compared baseline corticosterone (CORT) levels and telomere length in nestlings of the same age. We collected blood samples for hormone assay and telomere determination from two geographically distinct populations of the Thorn-tailed Rayadito (Aphrastura spinicauda) that differed in brood size; nestlings body mass and primary productivity. Within each population we used path analysis to evaluate the relationship between brood size, body mass, baseline CORT and telomere length. RESULTS: Within each distinct population, path coefficients showed a positive relationship between brood size and baseline CORT and a strong and negative correlation between baseline CORT and telomere length. In general, nestlings that presented higher baseline CORT levels tended to present shorter telomeres. When comparing populations it was the low latitude population that presented higher levels of baseline CORT and shorter telomere length. CONCLUSIONS: Taken together our results reveal the importance of the condition experienced early in life in affecting telomere length, and the relevance of integrative studies carried out in natural conditions.

18.
Oecologia ; 180(1): 33-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26423267

RESUMO

Individuals at the forefront of a range shift are likely to exhibit phenotypic traits that distinguish them from the population breeding within the historic range. Recent studies have examined morphological, physiological and behavioral phenotypes of individuals at the edge of their range. Several studies have found differences in the hypothalamic-pituitary-adrenal (HPA) axis activity in response to acute restraint stress in individuals at the range limits. HPA axis activation leads to elevations in glucocorticoids that regulate physiology and behavior. Here we compare the hormonal profiles and morphometrics from Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) breeding at the northern limit of the population's range to those birds breeding within the historic population range. Birds breeding at the northern limit experienced a harsher environment with colder temperatures; however, we found no differences in arthropod prey biomass between the northern limit and more southern (historic) sites. Males at the northern limit had higher body condition scores (mass corrected for body size) compared to individuals within the historic range, but no differences were found in beak and tarsus lengths, wing chord, muscle profile or fat stores. In males during the pre-parental stage, before breeding commenced, HPA axis activity was elevated in birds at the northern limit of the range, but no differences were found during the parental or molt stages. Females showed no differences in HPA axis activity during the parental stage. This study suggests that "pioneering" individuals at the limits of their breeding range exhibit physiology and morphology that are distinct from individuals within the historic range.


Assuntos
Comportamento de Retorno ao Território Vital , Sistema Hipotálamo-Hipofisário/fisiologia , Fenótipo , Sistema Hipófise-Suprarrenal/fisiologia , Reprodução , Pardais , Estresse Fisiológico , Migração Animal , Animais , Regiões Árticas , Cruzamento , Mudança Climática , Temperatura Baixa , Corticosterona/metabolismo , Feminino , Glucocorticoides/metabolismo , Masculino , Pardais/anatomia & histologia , Pardais/fisiologia
19.
Gen Comp Endocrinol ; 237: 10-18, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27449342

RESUMO

Climate change is causing rapid shifts in temperature while also increasing the frequency, duration, and intensity of extreme weather. In the northern hemisphere, the spring of 2013 was characterized as extreme due to record high snow cover and low temperatures. Studies that describe the effects of extreme weather on phenology across taxa are limited while morphological and physiological responses remain poorly understood. Stress physiology, as measured through baseline and stress-induced concentrations of cortisol or corticosterone, has often been studied to understand how organisms respond to environmental stressors. We compared body condition and stress physiology of two long-distance migrants breeding in low arctic Alaska - the white-crowned sparrow (Zonotrichia leucophrys) and Lapland longspur (Calcarius lapponicus) - in 2013, an extreme weather year, with three more typical years (2011, 2012, and 2014). The extended snow cover in spring 2013 caused measureable changes in phenology, body condition and physiology. Arrival timing for both species was delayed 4-5days compared to the other three years. Lapland longspurs had reduced fat stores, pectoralis muscle profiles, body mass, and hematocrit levels, while stress-induced concentrations of corticosterone were increased. Similarly, white-crowned sparrows had reduced pectoralis muscle profiles and hematocrit levels, but in contrast to Lapland longspurs, had elevated fat stores and no difference in mass or stress physiology relative to other study years. An understanding of physiological mechanisms that regulate coping strategies is of critical importance for predicting how species will respond to the occurrence of extreme events in the future due to global climate change.


Assuntos
Cruzamento , Estações do Ano , Pardais/fisiologia , Estresse Fisiológico/fisiologia , Tempo (Meteorologia) , Alaska , Animais , Regiões Árticas , Peso Corporal , Corticosterona/sangue , Feminino , Hematócrito , Sistema Hipotálamo-Hipofisário/fisiologia , Modelos Lineares , Masculino , Sistema Hipófise-Suprarrenal/fisiologia , Neve , Temperatura
20.
Glob Chang Biol ; 21(4): 1508-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25294359

RESUMO

Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat characteristics that are critical to accurately predicting future habitat extent for many wildlife species.


Assuntos
Distribuição Animal , Biodiversidade , Mudança Climática , Ecossistema , Fenômenos Fisiológicos Vegetais , Aves Canoras/fisiologia , Tundra , Alaska , Animais , Regiões Árticas , Dieta , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA