Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(23): 10843-10853, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38810089

RESUMO

Synthesis and characterization of DEMOFs (defect-engineered metal-organic frameworks) with coordinatively unsaturated sites (CUSs) for gas adsorption, catalysis, and separation are reported. We use the mixed-linker approach to introduce defects in Cu2-paddle wheel units of MOFs [Cu2(Me-trz-ia)2] by replacing up to 7% of the 3-methyl-triazolyl isophthalate linker (1L2-) with the "defective linker" 3-methyl-triazolyl m-benzoate (2L-), causing uncoordinated equatorial sites. PXRD of DEMOFs shows broadened reflections; IR and Raman analysis demonstrates only marginal changes as compared to the regular MOF (ReMOF, without a defective linker). The concentration of the integrated defective linker in DEMOFs is determined by 1H NMR and HPLC, while PXRD patterns reveal that DEMOFs maintain phase purity and crystallinity. Combined XPS (X-ray photoelectron spectroscopy) and cw EPR (continuous wave electron paramagnetic resonance) spectroscopy analyses provide insights into the local structure of defective sites and charge balance, suggesting the presence of two types of defects. Notably, an increase in CuI concentration is observed with incorporation of defective linkers, correlating with the elevated isosteric heat of adsorption (ΔHads). Overall, this approach offers valuable insights into the creation and evolution of CUSs within MOFs through the integration of defective linkers.

2.
Inorg Chem ; 60(17): 13517-13527, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34415154

RESUMO

S-Oxygenation of thiophenolate bridges by ethereal hydroperoxides was studied. [NiII2LS(PhCO2)]+ (1), where LS = macrocyclic aminethiolate supporting ligand, is S-oxygenated readily in a mixed methanol/acetonitrile solution with ether/dioxygen at room temperature in the presence of daylight. The reactions were found to depend strongly on the choice of the ether. Uptake of two O atoms occurs in dioxane to give a mixed thiolate/sulfinate complex [NiII2LSO2(PhCO2)]+ (2) containing the rare five-membered Ni(µ1,1-S)(µ1,2-OS)Ni core. In tetrahydrofuran, four O atoms are taken up by 1 to generate the bis(sulfinate) species [NiII2LSO4(PhCO2)]+ (3). A mono-S-oxygenated sulfenate intermediate can be detected by electrospray ionization mass spectrometry. The oxygenation reactions proceed in high yields without complex disintegration and invariably provide µ1,2-bridging sulfinates as established by spectroscopy (IR and UV/vis), X-ray crystallography, and accompanying density functional theory calculations. The oxygenation of the S atoms has a strong impact on the electronic structures of the nickel complexes. The monosulfinate complex 2 has an S = 2 ground state resulting from moderate ferromagnetic exchange coupling interactions (J = +15.7 cm-1; H = -2JS1S2), while an antiferromagnetic exchange interaction in 3 shows the presence of a ground state with spin S = 0 (J = -0.56 cm-1).

3.
Inorg Chem ; 60(12): 9008-9018, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34077201

RESUMO

Metal bis(dithiolene) complexes are promising building blocks for electrically conductive coordination polymers. N-Heterocyclic dithiolene complexes allow their cross-linking via the coordination of N-donor atoms to additional transition metal ions. In this study, we present the formal copper(II) and copper(III) 6,7-quinoxalinedithiolene complexes [Cu(qdt)2]- and [Cu(qdt)2]2- (qdt2-: 6,7-quinoxalinedithiolate), as well as the 2D coordination polymer Cu[Cu(Hqdt)(qdt)] (3). The dithiolene complexes were isolated as (Bu4N)2[Cu(qdt)2] (1), Na[Cu(qdt)2]·4H2O (2a), [Na(acetone)4][Cu(qdt)2] (2b), and [Ni(MeOH)6][Cu(qdt)2]2·2H2O (2c). Their crystal structures reveal nearly planar complexes with a high tendency of π-stacking. For a better understanding of their coordination behavior, the electronic properties are investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and DFT simulations. The synthesis of the 2D coordination polymer 3 involves the reduction and protonation of the monoanionic copper(III) complex. A combination of powder X-ray diffraction, magnetic susceptibility measurements, as well as IR and EPR spectroscopy confirm that formal [CuII(Hqdt)(qdt)]- units link trigonal planar copper(I) atoms to a dense 2D coordination polymer. The electrical conductivity of 3 at room temperature is 2 × 10-7 S/cm. Temperature dependent conductivity measurements confirm the semiconducting behavior of 3 with an Arrhenius derived activation energy of 0.33 eV. The strong absorption of 3 in the visible and NIR regions of the spectrum is caused by the small optical band gap of Eg,opt = 0.65 eV, determined by diffuse reflectance spectroscopy. This study sheds light on the coordination chemistry of N-heterocyclic dithiolene complexes and may serve as a reference for the future design and synthesis of dithiolene-based coordination polymers with interesting electrical and magnetic properties.

4.
Inorg Chem ; 59(22): 16441-16453, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33091305

RESUMO

A promising strategy for new electrically conductive coordination polymers is the combination of d10 metal ions, which tolerate short metal···metal distances, with dithiolene linkers, known for their "non-innocent" redox behavior. This study explores the coordination chemistry of 2,3-pyrazinedithiol (H2pdt) toward Cu+ and Ag+ ions, highlighting similarities and differences. The synthetic approach, starting with the fully protonated ligand, allowed the isolation of a homoleptic bis(dithiolene) complex with formal CuI atoms, [Cu(H2pdt)2]Cl (1). This complex was further transformed to a 1D coordination polymer with short metal···metal distances, 1D[Cu(Hpdt)] (2Cu). The larger Ag+ ion directly built up a very similar coordination polymer, 1D[Ag(Hpdt)] (2Ag), without any appearance of an intermediate metal complex. The coordination polymer 1D[Cu(H2pdt)I] (4), like complex 1, bears fully protonated H2pdt ligands in their dithione form. Upon heating, both compounds underwent auto-oxidation coupled with a dehydrogenation of the ligand to form the open-shell neutral copper(II) complex [Cu(Hpdt)2] (3) and the coordination polymer 1D[Cu2I2(H2pdt)(Hpdt)] (5), respectively. For all presented compounds, crystal structures are discussed in-depth. Furthermore, properties of 1, 3, and those of the three 1D coordination polymers, 2Ag, 2Cu, and 4, were investigated by UV-vis-NIR spectroscopy, cyclic voltammetry, and variable-temperature magnetic susceptibility, and direct current (dc)-conductivity measurements. The experimental results are compared and discussed with the aid of DFT simulations.

5.
Inorg Chem ; 58(24): 16424-16433, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31763830

RESUMO

3-(1,2,4-Triazol-4-yl)adamantane-1-carboxylic acid (tradcH), a heterobifunctional organic ligand in which carboxylic acid and 1,2,4-triazole groups are united through a rigid 1,3-adamantanediyl spacer, was employed for the synthesis of a MoVI oxide organic hybrid. The ligand crystallized from water as tradcH·H2O (1), possessing a two-dimensional hydrogen-bonding network, and from ethanol as a cyclic molecular solvate with the composition (tradcH)3·2EtOH (2). Treatment of tradcH with MoO3 under hydrothermal conditions afforded a new Mo trioxide hybrid, [MoO3(tradcH)]·H2O (3), which was structurally characterized. In 3, the molybdenum atoms form a polymeric zigzag chain of {µ2-O-MoO2}n which is supported by double triazole bridges, while the carboxylic acid termini are left uncoordinated. The coordination environment of the Mo centers appears as distorted cis-{MoN2O4} octahedra. The hybrid exhibits high thermal stability (up to 270 °C) and was employed for a relatively broad scope of catalytic oxidation reactions in the liquid phase. Its catalytic behavior may be compared to a reversible mutation, featuring the best sides of homogeneous and heterogeneous catalysis. The original solid material converts into soluble active species, and the latter revert to the original material upon completion of the catalytic reaction, precipitating and allowing straightforward catalyst separation/reuse (like a heterogeneous catalyst). This catalyst was explored for a chemical reaction scope covering sulfoxidation, oxidative alcohol dehydrogenation, aldehyde oxidation, and olefin epoxidation, using hydrogen peroxide as an eco-friendly oxidant that gives water as a coproduct.

6.
Chemistry ; 24(62): 16630-16644, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30133828

RESUMO

The synthesis and characterization of six homo- and heteroleptic coordination polymers and oxido clusters of bismuth(III) vinylsulfonates are reported. The solvent-mediated reaction of BiPh3 and vinylsulfonic acid in ethanol produces [{Ph2 Bi(O3 SCH=CH2 )}n ] (1), which crystallizes as a one-dimensional coordination polymer as a result of bridging sulfonato ligands accompanied by intermolecular Bi⋅⋅⋅ π(arene) London dispersion interactions. In solution, compound 1 equilibrates to give [{PhBi(O3 SCH=CH2 )2 }n ] (2) and BiPh3 . Compound 2 is obtained as a single product by the reaction of BiPh3 with vinylsulfonic acid in acetonitrile and crystallizes as a one-dimensional coordination polymer. The homoleptic vinylsulfonate [{Bi(O3 SCH=CH2 )3 }n ] (3) was isolated as a two-dimensional coordination polymer, which is quite moisture sensitive, but did not provide a distinct polynuclear bismuth oxido cluster upon hydrolysis. However, by treatment of [Bi6 O4 (OH)4 (NO3 )6 ]⋅H2 O or [Bi38 O45 (OMc)24 (dmso)9 (H2 O)2 ]⋅2 DMSO⋅5 H2 O (OMc=methacrylate) with vinylsulfonic acid, such a cluster, namely, [Bi9 O7 (OH)(O3 SCH=CH2 )11 (dmso)11 ](O3 SCH=CH2 )⋅3 DMSO (4), is available as the main product. Starting from the hexanuclear bismuth oxido nitrate, another cluster, [Bi38 O45 (NO3 )8 (O3 SCH=CH2 )14 (dmso)18 ](O3 SCH=CH2 )2 ⋅2 DMSO (5), was observed as a co-crystallizing side product, which upon further hydrolysis afforded [Bi38 O45 (NO3 )6 (OH)4 (O3 SCH=CH2 )12 (dmso)23 (H2 O)2 ](O3 SCH=CH2 )2 ⋅2 H2 O (6).

7.
Chemistry ; 23(14): 3338-3346, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27918632

RESUMO

Five copper zinc thiolate complexes [(iPr3 PCu)2 (ZnEt2 )(edt)]2 (1-Et), [(iPr3 PCu)2 (Zn(iPr)2 )(edt)]2 (1-iPr), [(iPr3 PCu)4 (edt)2 (ZnMe2 )]2 (2), [(iPr3 PCu)3 (ZnPh2 )(ZnPh)(edt)2 ]2 (3), and [(iPr3 PCu)2 Zn2 (edt)3 ]6 (4) were prepared by the reaction of [(iPr3 PCu)2 (edt)]2 with ZnR2 (R=Me, Et, Ph, iPr) with or without addition of ethanedithiol (edt2- =ethane-1,2-dithiolate). The molecular structures of these complexes were determined by single crystal X-ray diffraction. The ethanedithiolate ligands coordinate in µ3 -η1 :η2 :η1 (2, 4), µ4 -η1 :η1 :η2 :η1 (1-R, 3), and µ5 -η1 :η1 :η2 :η1 :η1 (2) bridging modes, each sulfur atom binds to two or three metal atoms. Evidence for the presence of the weak Zn-S bonds in solution was provided by NMR spectroscopy. Mixtures of 1-Et, 1-iPr, or 3 with Sn(edt)2 were examined by thermogravimetry up to 600 °C, whereupon volatile thermolysis products were identified by mass spectrometry. In all thermolysis experiments, the formation of Cu2 ZnSnS4 as main product, besides small amounts of binary metal sulfides, was confirmed by X-ray powder diffraction (PXRD) and EDX (energy dispersive X-ray spectroscopy) analysis.

8.
Inorg Chem ; 56(21): 13123-13131, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29052986

RESUMO

A series of five heteronuclear zinc tin chalcogenide complexes with the general formula [(tmeda)Zn(SnR2)2E3] (1-R, E = S; R = Me, Ph, tBu; 2-R, E = Se; R = Ph, tBu) have been synthesized and characterized by X-ray crystal structure analysis. In all cases, the six-membered ZnSn2E3 rings exhibit twist boat conformation. The presence of the molecular structures in solution is confirmed by 119Sn and 77Se NMR spectroscopy. Cothermolysis experiments using a mixture of complexes 1-R or 2-R and [(iPr3PCu)2(EC2H4E)]2 as a copper source were monitored by thermogravimetry and temperature dependent X-ray powder diffraction to examine the thermolysis reaction. According to Rietveld refinement, the solid residue consists of Cu2ZnSnS4 (up to 78 wt %) or Cu2ZnSnSe4 (up to 43 wt %) as the main product, respectively.

9.
Inorg Chem ; 56(8): 4380-4394, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28368105

RESUMO

Three organic ligands bearing 1,2,4-triazolyl donor moieties, (S)-4-(1-phenylpropyl)-1,2,4-triazole (trethbz), 4-(1,2,4-triazol-4-yl)benzoic acid (trPhCO2H), and 3-(1H-imidazol-4-yl)-2-(1,2,4-triazol-4-yl)propionic acid (trhis), were prepared to evaluate their coordination behavior in the development of molybdenum(VI) oxide organic hybrids. Four compounds, [Mo2O6(trethbz)2]·H2O (1), [Mo4O12(trPhCO2H)2]·0.5H2O (2a), [Mo4O12(trPhCO2H)2]·H2O (2b), and [Mo8O25(trhis)2(trhisH)2]·2H2O (3), were synthesized and characterized. The monofunctional tr-ligand resulted in the formation of a zigzag chain [Mo2O6(trethbz)2] built up from cis-{MoO4N2} octahedra united through common µ2-O vertices. Employing the heterodonor ligand with tr/-CO2H functions afforded either layer or ribbon structures of corner- or edge-sharing {MoO5N} polyhedra (2a or 2b) stapled by tr-links in axial positions, whereas -CO2H groups remained uncoordinated. The presence of the im-heterocycle as an extra function in trhis facilitated formation of zwitterionic molecules with a protonated imidazolium group (imH+) and a negatively charged -CO2- group, whereas the tr-fragment was left neutral. Under the acidic hydrothermal conditions used, the organic ligand binds to molybdenum atoms either through [N-N]-tr or through both [N-N]-tr and µ2-CO2- units, which occur in protonated bidentate or zwitterionic tetradentate forms (trhisH+ and trhis, respectively). This leads to a new zigzag subtopological motif (3) of negatively charged polyoxomolybdate {Mo8O25}n2n- consisting of corner- and edge-sharing cis-{MoO4N2} and {MoO6} octahedra, while the tetradentate zwitterrionic trhis species connect these chains into a 2D net. Electronic spectra of the compounds showed optical gaps consistent with semiconducting behavior. The compounds were investigated as epoxidation catalysts via the model reactions of achiral and prochiral olefins (cis-cyclooctene and trans-ß-methylstyrene) with tert-butylhydroperoxide. The best-performing catalyst (1) was explored for the epoxidation of other olefins, including biomass-derived methyl oleate, methyl linoleate, and prochiral dl-limonene.

10.
Inorg Chem ; 56(21): 12952-12966, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29019398

RESUMO

We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal CuI/MoVI and CuII/MoVI coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr2pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [CuII3(µ2-OH)2(µ2-tr)2]4+, [CuII3(µ2-tr)6]6+, [CuII2(µ2-tr)3]4+, etc., connected to polymeric arrays by anionic species (molybdate MoO42-, isomeric α-, δ-, and ß-octamolybdates {Mo8O26}4- or {Mo8O28H2}6-). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.


Assuntos
Complexos de Coordenação/química , Cobre/química , Molibdênio/química , Polímeros/química , Triazóis/química , Complexos de Coordenação/síntese química , Ligantes , Fenômenos Magnéticos , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Polímeros/síntese química
11.
Phys Chem Chem Phys ; 19(46): 31030-31038, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29155906

RESUMO

Continuous wave X-band electron paramagnetic resonance (EPR) and density functional theory (DFT) were successfully applied to explore the incorporation and coordination state of the Cu2+ ions in the [Cd0.98Cu0.02(prz-trz-ia)] porous metal-organic frameworks. EPR measurements on powder samples and single crystals provided the full electron Zeeman g and copper hyperfine ACu interaction tensors including the orientation of their principal axes frames. DFT computations allowed for a detailed interpretation of the experimental results in terms of coordination symmetry and binding properties of the paramagnetic Cu2+ ions. Cupric ions were found to substitute Cd2+ ions in the dinuclear Cd-Cd units where they experience a noticeably distorted elongated pyramidal coordination environment formed by three nitrogen and two oxygen atoms from three linker molecules.

12.
Inorg Chem ; 55(6): 3030-9, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26950305

RESUMO

Syntheses and comprehensive characterization of two closely related series of isomorphous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞(3)[M2(R(1)-R(2)-trz-ia)2] (M = Cu, Zn) are presented. Using solvothermal synthesis and synthesis of microcrystalline materials on the gram scale by refluxing a solution of the starting materials, 11 MOFs are readily available for a systematic investigation of structure-property relationships. The networks of the two series are assigned to rutile (rtl) (1-4) and α-PbO2 (apo) (5-9) topology, respectively. Due to the orientation of the triazole substituents toward the cavities, both the pore volume and the pore diameter can be adjusted by choice of the alkyl substituents. Compounds 1-9 exhibit pronounced microporosity with calculated porosities of 31-53% and show thermal stability up to 390 °C as confirmed by simultaneous thermal analysis. Systematic investigation of adsorption properties by CO2 (298 K) and N2 (77 K) adsorption studies reveal remarkable network flexibility induced by alkyl substituents on the linker. Fine-tuning of the gate opening pressure and of the hysteresis shape is possible by adjusting the substitution pattern and by choice of the metal ion.

13.
Inorg Chem ; 55(1): 239-50, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26675668

RESUMO

A bitopic ligand, 4-(3,5-dimethylpyrazol-4-yl)-1,2,4-triazole (Hpz-tr) (1), containing two different heterocyclic moieties was employed for the design of copper(II)-molybdate solids under hydrothermal conditions. In the multicomponent Cu(II)/Hpz-tr/Mo(VI) system, a diverse set of coordination hybrids, [Cu(Hpz-tr)2SO4]·3H2O (2), [Cu(Hpz-tr)Mo3O10] (3), [Cu4(OH)4(Hpz-tr)4Mo8O26]·6H2O (4), [Cu(Hpz-tr)2Mo4O13] (5), and [Mo2O6(Hpz-tr)]·H2O (6), was prepared and characterized. A systematic investigation of these systems in the form of a ternary crystallization diagram approach was utilized to show the influence of the molar ratios of starting reagents, the metal (Cu(II) and Mo(VI)) sources, the temperature, etc., on the reaction products outcome. Complexes 2-4 dominate throughout a wide crystallization range of the composition triangle, while the other two compounds 5 and 6 crystallize as minor phases in a narrow concentration range. In the crystal structures of 2-6, the organic ligand behaves as a short [N-N]-triazole linker between metal centers Cu···Cu in 2-4, Cu···Mo in 5, and Mo···Mo in 6, while the pyrazolyl function remains uncoordinated. This is the reason for the exceptional formation of low-dimensional coordination motifs: 1D for 2, 4, and 6 and 2D for 3 and 5. In all cases, the pyrazolyl group is involved in H bonding (H-donor/H-acceptor) and is responsible for π-π stacking, thus connecting the chain and layer structures in more complicated H-bonding architectures. These compounds possess moderate thermal stability up to 250-300 °C. The magnetic measurements were performed for 2-4, revealing in all three cases antiferromagnetic exchange interactions between neighboring Cu(II) centers and long-range order with a net moment below Tc of 13 K for compound 4.

14.
Nat Mater ; 13(4): 333-43, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651427

RESUMO

The intense interactions of guest molecules with the pore walls of nanoporous materials is the subject of continued fundamental research. Stimulated by their thermal energy, the guest molecules in these materials are subject to a continuous, irregular motion, referred to as diffusion. Diffusion, which is omnipresent in nature, influences the efficacy of nanoporous materials in reaction and separation processes. The recently introduced techniques of microimaging by interference and infrared microscopy provide us with a wealth of information on diffusion, hitherto inaccessible from commonly used techniques. Examples include the determination of surface barriers and the sticking coefficient's analogue, namely the probability that, on colliding with the particle surface, a molecule may continue its diffusion path into the interior. Microimaging is further seen to open new vistas in multicomponent guest diffusion (including the detection of a reversal in the preferred diffusion pathways), in guest-induced phase transitions in nanoporous materials and in matching the results of diffusion studies under equilibrium and non-equilibrium conditions.

15.
Chemistry ; 21(3): 1118-24, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25404549

RESUMO

Spectroscopic techniques are a powerful tool for structure determination, especially if single-crystal material is unavailable. (113)Cd solid-state NMR is easy to measure and is a highly sensitive probe because the coordination number, the nature of coordinating groups, and the geometry around the metal ion is reflected by the isotropic chemical shift and the chemical-shift anisotropy. Here, a detailed investigation of a series of 27 cadmium coordination polymers by (113)Cd solid-state NMR is reported. The results obtained demonstrate that (113)Cd NMR is a very sensitive tool to characterize the cadmium environment, also in non-single-crystal materials. Furthermore, this method allows the observation of guest-induced phase transitions supporting understanding of the structural flexibility of coordination frameworks.

16.
Inorg Chem ; 54(17): 8327-38, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26280712

RESUMO

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N-N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235-350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic-basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.

17.
Chemistry ; 20(5): 1318-31, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24338681

RESUMO

Several organo-gallium/indium chalcogenide complexes of copper(I), stabilized by trialkylphosphines, were isolated, structurally characterized by using single-crystal X-ray diffraction, and investigated in thermolysis experiments. The syntheses with [E(Me3Si)2] (E=S, Se) as a starting material and a chalcogen source involve the elimination of volatile silyl acetate, silyl ethers, and methane from copper(I) acetate, and Group 13 metal trimethyl compounds, respectively. Chalcogenide complexes, according to the general formulas [(R3PCu)4(MeM)4E6] (1-6) and [(R3PCu)6(MeM)4M4S13] (7-9; with R=alkyl and M=Ga, In), and mixed chalcogenide-phenylchalcogenolate complexes [(iPr3PCuEPh)3(MeGaE)4] (10, 11) were isolated. The heavy atom cores of 1-6 consist of an octahedron of chalcogen atoms, interpenetrated by a cube of metal atoms. Depending on the steric demand of the phosphine ligands, two constitutions are observed; the metal atoms of the same element either forming tetrahedra, or parallelograms, respectively. This constitutional isomerism is further investigated by quantum chemical calculations. Complexes 7-9 contain a central sulfur atom, surrounded by two interpenetrating tetrahedra of Group 13 metal atoms, an octahedron of copper atoms, and an icosahedron of twelve outer sulfur atoms; the heavy atom framework of 10 and 11 is a "cut-out" of this structure. Thermolysis experiments include thermogravimetry measurements and subsequent Rietveld phase analysis of the residues by using powder X-ray diffraction. The homologous compounds 1, 3, 4, and 6 yield the respective crystalline ternary semiconductor material CuME2 at temperatures below 300 °C. Partial release of Me3 M during the thermolysis process results in excess copper in the residue and therefore in small amounts of additional binary copper chalcogenide phases or metallic CuM alloys. Compound 8 produces nanocrystalline CuGaS2 at about 300 °C.

18.
Chemistry ; 20(29): 8862-6, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24939723

RESUMO

The development of water-mediated proton-conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal-organic framework (MOF) [La3L4(H2O)6]Cl⋅x H2O (1, L(2-) = 4-(4H-1,2,4-triazol-4-yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.9 nm in diameter. It forms a water-stable, porous structure that can be reversibly hydrated and dehydrated. The proton-conducting properties of 1 were investigated by impedance spectroscopy. Magic-angle spinning (MAS) and pulse field gradient (PFG) NMR spectroscopies confirm the dynamic nature of the incorporated water molecules. The diffusivities, determined by PFG NMR and IR microscopy, were found to be close to that of liquid water. This porous framework accomplishes the challenges of water stability and proton conduction even at 110 °C. The conductivity in 1 is proposed to occur by the vehicle mechanism.

19.
Inorg Chem ; 53(3): 1614-23, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24450969

RESUMO

Four types of trialkylphosphine-stabilized copper dialkylaluminum ethanedithiolate complexes with the compositions [(i)Pr3PCuSC2H4SAlR2]2 (R = Me, Et, (i)Pr, (t)Bu, vinyl), [((i)Pr3PCu)3(SC2H4S)2AlR2] (R = Et), [(Me3P)3CuSC2H4SAlR2] (R = Me, Et), and [(Me3P)4Cu][SC2H4SAlR2] (R = Me, Et, (i)Pr) have been synthesized and structurally characterized by X-ray diffraction. The first series features an eight-membered (CuSAlS)2 ring as the core structure. The trimethylphosphine complexes can be distinguished as nonionic and ionic compounds, depending on the amount of trimethylphosphine. In systematic thermogravimetric studies, the complexes were converted into the ternary semiconductor CuAlS2. In this process, a novel wurtzite-type CuAlS2 phase was identified. Binary copper sulfide is observed as a minor side product in thermolysis reactions when volatile trialkylaluminum is released. The thermolysis reactions are completed at temperatures between 330 and 470 °C, depending on the aluminum alkyls. The Cu/Al ratio and phase purity of the thermolysis products were determined by Rietveld analysis of the powder X-ray diffraction patterns and by inductively coupled plasma optical emission spectroscopy measurements. To our knowledge, this is the first study of molecular single-source precursors for CuAlS2.

20.
Inorg Chem ; 53(14): 7599-607, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24967844

RESUMO

An isostructural series of 15 structurally flexible microporous silver metal-organic frameworks (MOFs) is presented. The compounds with a dinuclear silver core as secondary building unit (Ag2N4) can be obtained under solvothermal conditions from substituted triazolyl benzoate linkers and AgNO3 or Ag2SO4; they exhibit 2-fold network interpenetration with lvt topology. Besides the crystal structures, the calculated pore size distributions of the microporous MOFs are reported. Simultaneous thermal analyses confirm the stability of the compounds up to 250 °C. Interconnected pores result in a three-dimensional pore structure. Although the porosity of the novel coordination polymers is in the range of only 20-36%, this series can be regarded as a model system for investigation of network flexibility, since the pore diameters and volumes can be gradually adjusted by the substituents of the 3-(1,2,4-triazol-4-yl)-5-benzamidobenzoates. The pore volumes of selected materials are experimentally determined by nitrogen adsorption at 77 K and carbon dioxide adsorption at room temperature. On the basis of the flexible behavior of the linkers a reversible framework transformation of the 2-fold interpenetrated network is observed. The resulting adsorption isotherms with one or two hysteresis loops are interpreted by a gate-opening process. Due to external stimuli, namely, the adsorptive pressure, the materials undergo a phase transition confirming the structural flexibility of the porous coordination polymer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA