Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445356

RESUMO

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Assuntos
Ferritinas/genética , Poríferos/genética , Animais , Sequência Conservada , Ferritinas/química , Ferritinas/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/classificação , Poríferos/metabolismo , Domínios Proteicos/genética , Análise de Sequência de DNA , Transcriptoma/fisiologia
2.
Chromosoma ; 126(3): 431-441, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27300555

RESUMO

Transvection is a phenomenon of interallelic communication whereby enhancers of one allele can activate a promoter located on the homologous chromosome. It has been shown for many independent genes that enhancers preferentially act on the cis-linked promoter, but deletion of this promoter allows the enhancers to act in trans. Here, we tested whether this cis-preference in the enhancer-promoter interaction could be reconstituted outside of the natural position of a gene. The yellow gene was chosen as a model system. Transgenic flies were generated that carried the yellow gene modified by the inclusion of the strategically placed recognition sites for the Cre and Flp recombinases. To facilitate transvection, an endogenous Su(Hw) insulator (1A2) or gypsy insulator was placed behind the yellow gene. Independent action of the recombinases produced a pair of derivative alleles, one containing the promoter-driven yellow gene, and the other, the enhancers and promoter that failed to produce a functional yellow protein. As a result, we observed strong transvection in many genomic regions, suggesting that a complete cis-preference of the enhancer-promoter interactions is mainly restricted to genes in their natural loci.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Ativação Transcricional , Alelos , Animais , Cromossomos de Insetos/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica
3.
Biochim Biophys Acta ; 1864(6): 738-746, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26945516

RESUMO

Baculoviruses are large DNA viruses that infect insect species such as Lepidoptera and are used in biotechnology for protein production and in agriculture as insecticides against crop pests. Baculoviruses require activity of host proteasomes for efficient reproduction, but how they control the cellular proteome and interact with the ubiquitin proteasome system (UPS) of infected cells remains unknown. In this report, we analyzed possible changes in the subunit composition of 26S proteasomes of the fall armyworm, Spodoptera frugiperda (Sf9), cells in the course of infection with the Autographa californica multiple nucleopolyhedrovirus (AcMNPV). 26S proteasomes were purified from Sf9 cells by an immune affinity method and subjected to 2D gel electrophoresis followed by MALDI-TOF mass spectrometry and Mascot search in bioinformatics databases. A total of 34 homologues of 26S proteasome subunits of eukaryotic species were identified including 14 subunits of the 20S core particle (7 α and 7 ß subunits) and 20 subunits of the 19S regulatory particle (RP). The RP contained homologues of 11 of RPN-type and 6 of RPT-type subunits, 2 deubiquitinating enzymes (UCH-14/UBP6 and UCH-L5/UCH37), and thioredoxin. Similar 2D-gel maps of 26S proteasomes purified from uninfected and AcMNPV-infected cells at 48hpi confirmed the structural integrity of the 26S proteasome in insect cells during baculovirus infection. However, subtle changes in minor forms of some proteasome subunits were detected. A portion of the α5(zeta) cellular pool that presumably was not associated with the proteasome underwent partial proteolysis at a late stage in infection.


Assuntos
Nucleopoliedrovírus/patogenicidade , Complexo de Endopeptidases do Proteassoma/química , Proteômica , Spodoptera/citologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727272

RESUMO

Microtubules are an indispensable component of all eukaryotic cells due to their role in mitotic spindle formation, yet their organization and number can vary greatly in the interphase. The last common ancestor of all eukaryotes already had microtubules and microtubule motor proteins moving along them. Sponges are traditionally regarded as the oldest animal phylum. Their body does not have a clear differentiation into tissues, but it contains several distinguishable cell types. The choanocytes stand out among them and are responsible for creating a flow of water with their flagella and increasing the filtering and feeding efficiency of the sponge. Choanocyte flagella contain microtubules, but thus far, observing a developed system of cytoplasmic microtubules in non-flagellated interphase sponge cells has been mostly unsuccessful. In this work, we combine transcriptomic analysis, immunofluorescence, and electron microscopy with time-lapse recording to demonstrate that microtubules appear in the cytoplasm of sponge cells only when transdifferentiation processes are activated. We conclude that dynamic cytoplasmic microtubules in the cells of sponges are not a persistent but rather a transient structure, associated with cellular plasticity.


Assuntos
Diferenciação Celular , Interfase , Microtúbulos , Poríferos , Microtúbulos/metabolismo , Animais , Poríferos/citologia
5.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34238777

RESUMO

Using an original method, we have received Drosophila melanogaster with a deficiency including a complete sequence of quick-to-court gene. In this report, we describe the behavioural features of this new deletion mutant. There were no serious deviations from the normal mating behaviour in flies with the deletion, but the behaviour of deletion mutants still had some features. Of all the elements, only the frequency of licking significantly increased in mutants. The duration of mating elements did not change in flies with deletion, and the latent period decreased only for following the female and licking. We have found that mutant males produce more courtship song than control males when courting Oregon R females as estimated by the pulse song index. In our experiment, mutant females provoked much less pulse song production by Oregon R males than control females do. Moreover, Oregon R males initiate courtship song towards mutant females later than towards control females. In other words, the study of pulse song production showed that the deficiency in females leads to a decrease in the intensity of courtship of wild-type males, whereas the deficiency in males leads to more intensive care for wild-type females.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Reprodução/genética , Animais , Corte , Drosophila melanogaster/fisiologia , Feminino , Deleção de Genes , Masculino , Mutação/genética , Comportamento Sexual Animal/fisiologia
7.
PLoS One ; 15(2): e0228722, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084159

RESUMO

The ability to regulate oxygen consumption evolved in ancestral animals and is intrinsically linked to iron metabolism. The iron pathways have been intensively studied in mammals, whereas data on distant invertebrates are limited. Sea sponges represent the oldest animal phylum and have unique structural plasticity and capacity to reaggregate after complete dissociation. We studied iron metabolic factors and their expression during reaggregation in the White Sea cold-water sponges Halichondria panicea and Halisarca dujardini. De novo transcriptomes were assembled using RNA-Seq data, and evolutionary trends were analyzed with bioinformatic tools. Differential expression during reaggregation was studied for H. dujardini. Enzymes of the heme biosynthesis pathway and transport globins, neuroglobin (NGB) and androglobin (ADGB), were identified in sponges. The globins mutate at higher evolutionary rates than the heme synthesis enzymes. Highly conserved iron-regulatory protein 1 (IRP1) presumably interacts with the iron-responsive elements (IREs) found in mRNAs of ferritin (FTH1) and a putative transferrin receptor NAALAD2. The reaggregation process is accompanied by increased expression of IRP1, the antiapoptotic factor BCL2, the inflammation factor NFκB (p65), FTH1 and NGB, as well as by an increase in mitochondrial density. Our data indicate a complex mechanism of iron regulation in sponge structural plasticity and help to better understand general mechanisms of morphogenetic processes in multicellular species.


Assuntos
Ferro/metabolismo , Poríferos/metabolismo , Animais , Biologia Computacional , Perfilação da Expressão Gênica , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Anotação de Sequência Molecular , Filogenia , Poríferos/genética , RNA-Seq
8.
Biochim Biophys Acta Proteins Proteom ; 1867(9): 840-853, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228587

RESUMO

Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.


Assuntos
Proteínas de Insetos/química , Chaperonas Moleculares/química , Complexo de Endopeptidases do Proteassoma/química , Spodoptera/enzimologia , Animais , Cromatografia Líquida , Proteínas de Insetos/isolamento & purificação , Espectrometria de Massas , Chaperonas Moleculares/isolamento & purificação , Complexo de Endopeptidases do Proteassoma/isolamento & purificação
9.
Mol Cell Biol ; 25(21): 9283-91, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227580

RESUMO

The Suppressor of the Hairy wing [Su(Hw)] binding region within the gypsy retrotransposon is the best known chromatin insulator in Drosophila melanogaster. According to previous data, two copies of the gypsy insulator inserted between an enhancer and a promoter neutralize each other's actions, which is indicative of an interaction between the protein complexes bound to the insulators. We have investigated the role of pairing between the gypsy insulators located on homologous chromosomes in trans interaction between yellow enhancers and a promoter. It has been shown that trans activation of the yellow promoter strongly depends on the site of the transposon insertion, which is evidence for a role of surrounding chromatin in homologous pairing. The presence of the gypsy insulators in both homologous chromosomes even at a distance of 9 kb downstream from the promoter dramatically improves the trans activation of yellow. Moreover, the gypsy insulators have proved to stabilize trans activation between distantly located enhancers and a promoter. These data suggest that gypsy insulator pairing is involved in communication between loci in the Drosophila genome.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Ativação Transcricional , Animais , Cromatina/genética , Genoma de Inseto , Regiões Promotoras Genéticas , Retroelementos/genética
10.
Virus Res ; 253: 68-76, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890203

RESUMO

The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/fisiologia , Spodoptera/enzimologia , Adenosina Trifosfatases/genética , Animais , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Nucleopoliedrovírus/genética , Células Sf9 , Spodoptera/genética , Spodoptera/virologia , Replicação Viral
11.
Mol Cell Biol ; 22(9): 3204-18, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11940677

RESUMO

Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Produtos do Gene gag , Telômero/metabolismo , Animais , Sequência de Bases , Proteínas Cromossômicas não Histona/genética , Aberrações Cromossômicas , Cruzamentos Genéticos , DNA/genética , DNA/metabolismo , Proteínas de Drosophila/genética , Feminino , Conversão Gênica , Duplicação Gênica , Regulação da Expressão Gênica , Genes de Insetos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mutação , Mapeamento Físico do Cromossomo , Telômero/genética , Moldes Genéticos
12.
Genetics ; 202(2): 601-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715665

RESUMO

Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer-promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and "bridging" proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior-posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Elementos Isolantes , Alelos , Animais , Drosophila/embriologia , Epistasia Genética , Regulação da Expressão Gênica , Ordem dos Genes , Genes Homeobox , Mutação , Especificidade de Órgãos/genética , Fenótipo , Ligação Proteica
13.
PLoS One ; 6(10): e26422, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022613

RESUMO

Transgenic insects are a promising tool in sterile insect techniques and population replacement strategies. Such transgenic insects can be created using nonautonomous transposons, which cannot be transferred without a transposase source. In biocontrol procedures where large numbers of insects are released, there is increased risk of transgene remobilization caused by external transposase sources that can alter the characteristics of the transgenic organisms lead horizontal transgene transfer to other species. Here we describe a novel, effective method for transgene stabilization based on the introduction of directed double-strand breaks (DSB) into a genome-integrated sequence and their subsequent repair by the single-strand annealing (SSA) pathway. Due to the construct's organization, the repair pathway is predictable, such that all transposon and marker sequences can be deleted, while preserving integration of exogenous DNA in the genome. The exceptional conservation of DNA repair pathways makes this method suitable for a broad range of organisms.


Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Mutagênese Sítio-Dirigida/métodos , Transgenes/genética , Animais , Sequência de Bases , Drosophila melanogaster/genética , Vetores Genéticos/genética , Genoma de Inseto/genética , Fenótipo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA