Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell ; 181(2): 362-381.e28, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220312

RESUMO

During human evolution, the knee adapted to the biomechanical demands of bipedalism by altering chondrocyte developmental programs. This adaptive process was likely not without deleterious consequences to health. Today, osteoarthritis occurs in 250 million people, with risk variants enriched in non-coding sequences near chondrocyte genes, loci that likely became optimized during knee evolution. We explore this relationship by epigenetically profiling joint chondrocytes, revealing ancient selection and recent constraint and drift on knee regulatory elements, which also overlap osteoarthritis variants that contribute to disease heritability by tending to modify constrained functional sequence. We propose a model whereby genetic violations to regulatory constraint, tolerated during knee development, lead to adult pathology. In support, we discover a causal enhancer variant (rs6060369) present in billions of people at a risk locus (GDF5-UQCC1), showing how it impacts mouse knee-shape and osteoarthritis. Overall, our methods link an evolutionarily novel aspect of human anatomy to its pathogenesis.


Assuntos
Condrócitos/fisiologia , Articulação do Joelho/fisiologia , Osteoartrite/genética , Animais , Evolução Biológica , Condrócitos/metabolismo , Evolução Molecular , Predisposição Genética para Doença/genética , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/metabolismo , Células HEK293 , Humanos , Joelho/fisiologia , Camundongos , Células NIH 3T3 , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Risco
2.
J Cell Sci ; 137(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38345101

RESUMO

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.


Assuntos
Matriz Extracelular , Membrana Nuclear , Humanos , Antígeno Ki-67/metabolismo , Matriz Extracelular/metabolismo , Mioblastos/metabolismo , Proliferação de Células
3.
FASEB J ; 38(6): e23547, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498368

RESUMO

Proteoglycan 4 (PRG4) is a boundary lubricant originally identified in articular cartilage and has been since shown to have immunomodulation and antifibrotic properties. Previously, we have demonstrated that recombinant human (rh)PRG4 treatment accelerates auricular cartilage injury closure through an inhibition of the fibrotic response, and promotion of tissue regeneration in mice. The purpose of the current study was to examine the effects of rhPRG4 treatment (vs. a DMSO carried control) on full-thickness skin wound healing in a preclinical porcine model. Our findings suggest that while rhPRG4 did not significantly accelerate nor impede full-thickness skin wound closure, it did improve repair quality by decreasing molecular markers of fibrosis and increasing re-vascularization. We also demonstrated that rhPRG4 treatment increased dermal adipose tissue during the healing process specifically by retaining adipocytes in the wound area but did not inhibit lipolysis. Overall, the results of the current study have demonstrated that rhPRG4 acts as antifibrotic agent and regulates dermal adipose tissue during the healing processes resulting in a tissue with a trajectory that more resembles the native skin vs. a fibrotic patch. This study provides strong rationale to examine if rhPRG4 can improve regeneration in human wounds.


Assuntos
Cartilagem Articular , Proteoglicanas , Suínos , Humanos , Animais , Camundongos , Proteoglicanas/farmacologia , Pele
4.
Bioessays ; 45(11): e2300037, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37582645

RESUMO

There are an increasing number of cell therapy approaches being studied and employed world-wide. An emerging area in this field is the use of human pluripotent stem cell (hPSC) products for the treatment of injuries/diseases that cannot be effectively managed through current approaches. However, as with any cell therapy, vast numbers of functional and safe cells are required. Bioreactors provide an attractive avenue to generate clinically relevant cell numbers with decreased labour and decreased batch to batch variation. Yet, current methods of performing quality control are not readily scalable to the cell densities produced during bioreactor scale-up. One potential solution is the application of inducible/controllable suicide genes that can trigger cell death in unwanted cell types. These types of approaches have been demonstrated to increase the quality and safety of the resultant cell products. In this review, we will provide background on these approaches and how they could be used together with bioreactor technology to create effective bioprocesses for the generation of high quality and safe hPSCs for use in regenerative medicine approaches.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Humanos , Técnicas de Cultura de Células/métodos , Reatores Biológicos , Controle de Qualidade , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular/genética
5.
Calcif Tissue Int ; 114(6): 625-637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643416

RESUMO

Loss of p21 leads to increased bone formation post-injury; however, the mechanism(s) by which this occurs remains undetermined. E2f1 is downstream of p21 and as a transcription factor can act directly on gene expression; yet it is unknown if E2f1 plays a role in the osteogenic effects observed when p21 is differentially regulated. In this study we aimed to investigate the interplay between p21 and E2f1 and determine if the pro-regenerative osteogenic effects observed with the loss of p21 are E2f1 dependent. To accomplish this, we employed knockout p21 and E2f1 mice and additionally generated a p21/E2f1 double knockout. These mice underwent burr-hole injuries to their proximal tibiae and healing was assessed over 7 days via microCT imaging. We found that p21 and E2f1 play distinct roles in bone regeneration where the loss of p21 increased trabecular bone formation and loss of E2f1 increased cortical bone formation, yet loss of E2f1 led to poorer bone repair overall. Furthermore, when E2f1 was absent, either individually or simultaneously with p21, there was a dramatic decrease of the number of osteoblasts, osteoclasts, and chondrocytes at the site of injury compared to p21-/- and C57BL/6 mice. Together, these results suggest that E2f1 regulates the cell populations required for bone repair and has a distinct role in bone formation/repair compared to p21-/-E2f1-/-. These results highlight the possibility of cell cycle and/or p21/E2f1 being potential druggable targets that could be leveraged in clinical therapies to improve bone healing in pathologies such as osteoporosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Fator de Transcrição E2F1 , Osteogênese , Animais , Camundongos , Regeneração Óssea/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33574059

RESUMO

Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.


Assuntos
Adaptação Fisiológica , Encéfalo/crescimento & desenvolvimento , Cebus/genética , Genoma , Longevidade/genética , Animais , Evolução Molecular , Citometria de Fluxo/métodos , Florestas , Genômica/métodos
7.
Bioessays ; 43(2): e2000215, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191529

RESUMO

Mesenchymal stem cells (MSCs) are present in fat tissues throughout the body, yet little is known regarding their biological role within epidural fat. We hypothesize that debridement of epidural fat and/or subsequent loss of MSCs within this tissue, disrupts homeostasis in the vertebral environment resulting in increased inflammation, fibrosis, and decreased neovascularization leading to poorer functional outcomes post-injury/operatively. Clinically, epidural fat is commonly considered a space-filling tissue with limited functionality and therefore typically discarded during surgery. However, the presence of MSCs within epidural fat suggests that itis more biologically active than historically believed and may contribute to the regulation of homeostasis and regeneration in the dural environment. While the current literature supports our hypothesis, it will require additional experimentation to determine if epidural fat is an endogenous driver of repair and regeneration and if so, this tissue should be minimally perturbed from its original location in the spinal canal. Also see the video abstract here https://youtu.be/MIol_IWK1os.


Assuntos
Células-Tronco Mesenquimais , Tecido Adiposo , Homeostase , Humanos , Inflamação
8.
Cell Tissue Res ; 389(3): 483-499, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704103

RESUMO

Mesenchymal progenitor cells (MPCs) have been recently identified in human and murine epidural fat and have been hypothesized to contribute to the maintenance/repair/regeneration of the dura mater. MPCs can secrete proteoglycan 4 (PRG4/lubricin), and this protein can regulate tissue homeostasis through bio-lubrication and immunomodulatory functions. MPC lineage tracing reporter mice (Hic1) and human epidural fat MPCs were used to determine if PRG4 is expressed by these cells in vivo. PRG4 expression co-localized with Hic1+ MPCs in the dura throughout skeletal maturity and was localized adjacent to sites of dural injury. When Hic1+ MPCs were ablated, PRG4 expression was retained in the dura, yet when Prx1+ MPCs were ablated, PRG4 expression was completely lost. A number of cellular processes were impacted in human epidural fat MPCs treated with rhPRG4, and human MPCs contributed to the formation of epidural fat, and dura tissues were xenotransplanted into mouse dural injuries. We have shown that human and mouse MPCs in the epidural/dura microenvironment produce PRG4 and can contribute to dura homeostasis/repair/regeneration. Overall, these results suggest that these MPCs have biological significance within the dural microenvironment and that the role of PRG4 needs to be further elucidated.


Assuntos
Dura-Máter/metabolismo , Células-Tronco Mesenquimais , Proteoglicanas/metabolismo , Animais , Dura-Máter/citologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos
9.
J Biol Chem ; 295(47): 16023-16036, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32928962

RESUMO

The synovial fluid glycoprotein lubricin (also known as proteoglycan 4) is a mucin-type O-linked glycosylated biological lubricant implicated to be involved in osteoarthritis (OA) development. Lubricin's ability to reduce friction is related to its glycosylation consisting of sialylated and unsialylated Tn-antigens and core 1 and core 2 structures. The glycans on lubricin have also been suggested to be involved in crosslinking and stabilization of the lubricating superficial layer of cartilage by mediating interaction between lubricin and galectin-3. However, with the spectrum of glycans being found on lubricin, the glycan candidates involved in this interaction were unknown. Here, we confirm that the core 2 O-linked glycans mediate this lubricin-galectin-3 interaction, shown by surface plasmon resonance data indicating that recombinant lubricin (rhPRG4) devoid of core 2 structures did not bind to recombinant galectin-3. Conversely, transfection of Chinese hamster ovary cells with the core 2 GlcNAc transferase acting on a mucin-type O-glycoprotein displayed increased galectin-3 binding. Both the level of galectin-3 and the galectin-3 interactions with synovial lubricin were found to be decreased in late-stage OA patients, coinciding with an increase in unsialylated core 1 O-glycans (T-antigens) and Tn-antigens. These data suggest a defect in crosslinking of surface-active molecules in OA and provide novel insights into OA molecular pathology.


Assuntos
Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Osteoartrite/metabolismo , Proteoglicanas/metabolismo , Membrana Sinovial/metabolismo , Adulto , Idoso , Animais , Proteínas Sanguíneas/genética , Células CHO , Cricetulus , Feminino , Galectinas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/patologia , Proteoglicanas/genética , Membrana Sinovial/patologia
10.
Exp Eye Res ; 208: 108628, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048779

RESUMO

Dry eye disease (DED) affects hundreds of millions of people worldwide. It is characterized by the production of inflammatory cytokines and chemokines as well as damaging matrix metalloproteinases (MMPs) at the ocular surface. While proteoglycan 4 (PRG4), a mucin-like glycoprotein present at the ocular surface, is most well known as a boundary lubricant that contributes to ocular surface integrity, it has been shown to blunt inflammation in various cell types, suggesting a dual mechanism of action. Recently, full-length recombinant human PRG4 (rhPRG4) has been shown to improve signs and symptoms of DED in humans. However, there remains a significant need for basic science research on rhPRG4's biological properties and its potential therapeutic mechanisms of action in treating DED. Therefore, the objectives of this study were to characterize endogenous PRG4 expression by telomerase-immortalized human corneal epithelial (hTCEpi) cells, examine whether exogenous rhPRG4 modulates cytokine and chemokine secretion in response to dry eye associated inflammation (TNFα and IL-1ß), explore interactions between rhPRG4 and MMP-9, and understand how experimental dry eye (EDE) in mice affects PRG4 expression. PRG4 secretion from hTCEpi cells was quantified by Western blot and expression visualized by immunocytochemistry. Cytokine/chemokine production was measured by ELISA and Luminex, while rhPRG4's effect on MMP-9 activity, binding, and expression was quantified using an MMP-9 inhibitor kit, surface plasmon resonance, and reverse transcription polymerase chain reaction (RT-PCR), respectively. Finally, EDE was induced in mice, and PRG4 was visualized by immunohistochemistry in the cornea and by Western blot in lacrimal gland lysate. In vitro results demonstrate that hTCEpi cells synthesize and secrete PRG4, and PRG4 secretion is inhibited by TNFα and IL-1ß. In response to these pro-inflammatory stresses, exogenous rhPRG4 significantly reduced the stimulated production of IP-10, RANTES, ENA-78, GROα, MIP-3α, and MIG, and trended towards a reduction of MIP-1α and MIP-1ß. The hTCEpi cells were also able to internalize fluorescently-labelled rhPRG4, consistent with a mechanism of action that includes downstream biological signaling pathways. rhPRG4 was not digested by MMP-9, and it did not modulate MMP-9 gene expression in hTCEpi cells, but it was able to bind to MMP-9 and inhibited in vitro activity of exogenous MMP-9 in the presence of human tears. Finally, in vivo results demonstrate that EDE significantly decreased immunolocalization of PRG4 on the corneal epithelium and trended towards a reduction of PRG4 in lacrimal gland lysate. Collectively these results demonstrate rhPRG4 has anti-inflammatory properties on corneal epithelial cells, particularly as it relates to mitigating chemokine production, and is an inhibitor of MMP-9 activity, as well as that in vivo expression of PRG4 can be altered in preclinical models of DED. In conclusion, these findings contribute to our understanding of PRG4's immunomodulatory properties in the context of DED inflammation and provide the foundation and motivation for further mechanistic research of PRG4's properties on the ocular surface as well as expanding clinical evaluation of its ability as a multifunctional therapeutic agent to effectively provide relief to those who suffer from DED.


Assuntos
Síndromes do Olho Seco/genética , Epitélio Corneano/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Proteoglicanas/genética , RNA/genética , Lágrimas/metabolismo , Western Blotting , Células Cultivadas , Quimiocinas/metabolismo , Síndromes do Olho Seco/complicações , Síndromes do Olho Seco/patologia , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/patologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Proteoglicanas/biossíntese
11.
Bioessays ; 41(1): e1800166, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30485469

RESUMO

Proteoglycan 4 (PRG4), first identified in synovial fluid, is an extracellular matrix structural protein in the joint implicated in reducing shear at the cartilage surface as well as controlling adhesion-dependent synovial growth and regulating bulk protein deposition onto the cartilage. However, recent evidence suggests that it can bind to and effect downstream signaling of a number of cell surface receptors implicated in regulating the inflammatory response. Therefore, we pose the hypothesis: Does PRG4 regulate the inflammatory response and maintain tissue homeostasis? Based on these novel findings implicating PRG4 as an inflammatory signaling molecule, we will present and discuss several hypotheses regarding potential mechanisms by which PRG4 may be able to regulate inflammation. If future studies can demonstrate that PRG4 is a potent inflammatory mediator, this will change current paradigms in the musculoskeletal and ophthalmological fields regarding the how the inflammatory microenvironment is regulated in these tissues and potentially others.


Assuntos
Homeostase , Inflamação/metabolismo , Proteoglicanas/fisiologia , Animais , Humanos , Proteoglicanas/imunologia , Proteoglicanas/metabolismo , Transdução de Sinais
12.
Biotechnol Bioeng ; 117(5): 1316-1328, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31960947

RESUMO

Embryonic stem cells (ESCs) have almost unlimited proliferation capacity in vitro and can retain the ability to contribute to all cell lineages, making them an ideal platform material for cell-based therapies. ESCs are traditionally cultured in static flasks on a feeder layer of murine embryonic fibroblast cells. Although sufficient to generate cells for research purposes, this approach is impractical to achieve large quantities for clinical applications. In this study, we have developed protocols that address a variety of challenges that currently bottleneck clinical translation of ESCs expanded in stirred suspension bioreactors. We demonstrated that mouse ESCs (mESCs) cryopreserved in the absence of feeder cells could be thawed directly into stirred suspension bioreactors at extremely low inoculation densities (100 cells/ml). These cells sustained proliferative capacity through multiple passages and various reactor sizes and geometries, producing clinically relevant numbers (109 cells) and maintaining pluripotency phenotypic and functional properties. Passages were completed in stirred suspension bioreactors of increasing scale, under defined batch conditions which greatly improved resource efficiency. Output mESCs were analyzed for pluripotency marker expression (SSEA-1, SOX-2, and Nanog) through flow cytometry, and spontaneous differentiation and teratoma analysis was used to demonstrate functional maintenance of pluripotency.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Criopreservação , Células-Tronco Embrionárias/citologia , Animais , Contagem de Células , Células Cultivadas , Camundongos , Camundongos SCID
13.
BMC Musculoskelet Disord ; 21(1): 432, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620156

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent musculoskeletal disease resulting in progressive degeneration of the hyaline articular cartilage within synovial joints. Current repair treatments for OA often result in poor quality tissue that is functionally ineffective compared to the hyaline cartilage and demonstrates increased failure rates post-treatment. Complicating efforts to improve clinical outcomes, animal models used in pre-clinical research show significant heterogeneity in their regenerative and degenerative responses associated with their species, age, genetic/epigenetic traits, and context of cartilage injury or disease. These can lead to variable outcomes when testing and validating novel therapeutic approaches for OA. Furthermore, it remains unclear whether protection against OA among different model systems is driven by inhibition of cartilage degeneration, enhancement of cartilage regeneration, or any combination thereof. MAIN TEXT: Understanding the mechanistic basis underlying this context-dependent duality is essential for the rational design of targeted cartilage repair and OA therapies. Here, we discuss some of the critical variables related to the cross-species paradigm of degenerative and regenerative abilities found in pre-clinical animal models, to highlight that a gradient of regenerative competence within cartilage may exist across species and even in the greater human population, and likely influences clinical outcomes. CONCLUSIONS: A more complete understanding of the endogenous regenerative potential of cartilage in a species specific context may facilitate the development of effective therapeutic approaches for cartilage injury and/or OA.


Assuntos
Envelhecimento/fisiologia , Cartilagem Articular/lesões , Cartilagem Articular/fisiologia , Osteoartrite/fisiopatologia , Regeneração/fisiologia , Animais , Condrócitos/fisiologia , Condrogênese/fisiologia , Humanos , Modelos Animais , Osteoartrite/genética
14.
Ann Rheum Dis ; 78(1): 111-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287418

RESUMO

OBJECTIVES: We recently identified microRNA-181a-5p (miR-181a-5p) as a critical mediator involved in the destruction of lumbar facet joint (FJ) cartilage. In this study, we tested if locked nucleic acid (LNA) miR-181a-5p antisense oligonucleotides (ASO) could be used as a therapeutic to limit articular cartilage degeneration. METHODS: We used a variety of experimental models consisting of both human samples and animal models of FJ and knee osteoarthritis (OA) to test the effects of LNA-miR-181a-5p ASO on articular cartilage degeneration. Histopathological analysis including immunohistochemistry and in situ hybridisation were used to detect key OA catabolic markers and microRNA, respectively. Apoptotic/cell death markers were evaluated by flow cytometry. qPCR and immunoblotting were applied to quantify gene and protein expression. RESULTS: miR-181a-5p expression was increased in human FJ OA and knee OA cartilage as well as injury-induced FJ OA (rat) and trauma-induced knee OA (mouse) cartilage compared with control cartilage, correlating with classical OA catabolic markers in human, rat and mouse cartilage. We demonstrated that LNA-miR-181a-5p ASO in rat and mouse chondrocytes reduced the expression of cartilage catabolic and chondrocyte apoptotic/cell death markers in vitro. Treatment of OA-induced rat FJ or mouse knee joints with intra-articular injections of in vivo grade LNA-miR-181a-5p ASO attenuated cartilage destruction, and the expression of catabolic, hypertrophic, apoptotic/cell death and type II collagen breakdown markers. Finally, treatment of LNA-miR-181a-5p ASO in cultures of human knee OA chondrocytes (in vitro) and cartilage explants (ex vivo) further demonstrated its cartilage protective effects. CONCLUSIONS: Our data demonstrate, for the first time, that LNA-miR-181a-5p ASO exhibit cartilage-protective effects in FJ and knee OA.


Assuntos
Cartilagem Articular/efeitos dos fármacos , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Osteoartrite/genética , Substâncias Protetoras/farmacologia , Animais , Apoptose/genética , Condrócitos/metabolismo , Humanos , Articulação do Joelho/efeitos dos fármacos , Vértebras Lombares , Camundongos , Ratos , Articulação Zigapofisária/efeitos dos fármacos
15.
Clin Proteomics ; 16: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31160890

RESUMO

BACKGROUND: Inflammatory arthritis (IA) is an immunological disorder in which loss of immune tolerance to endogenous self-antigens perpetuates synovitis and eventual destruction of the underlying cartilage and bone. Pathological changes in the joint are expected to be represented by synovial fluid (SF) proteins and peptides. In the present study, a mass spectrometry-based approach was utilized for the identification of key protein and peptide mediators of IA. METHODS: Age-matched SF samples from 10 rheumatoid arthritis patients, 10 psoriatic arthritis patients and 10 cadaveric controls were subjected to an integrated proteomic and peptidomic protocol using liquid chromatography tandem mass spectrometry. Significant differentially abundant proteins and peptides were identified between cohorts according to the results of a Mann-Whitney U test coupled to the Benjamini-Hochberg correction for multiple hypothesis testing. Fold change ratios were computed for each protein and peptide according to their log-transformed extracted ion current. Pathway analysis and antimicrobial peptide (AMP) prediction were conducted to clarify the pathophysiological relevance of identified proteins and peptides to IA. RESULTS: We determined that 144 proteins showed significant differential abundance between the IA and control SF proteomes, of which 11 protein candidates were selected for future follow-up studies. Similar analyses applied to our peptidomic data identified 15 peptide sequences, originating from 4 protein precursors, to have significant differential abundance in IA compared to the control SF peptidome. Pathway enrichment analysis of the IA SF peptidome along with AMP prediction suggests a possible mechanistic role of microbes in eliciting an immune response which drives the development of IA. CONCLUSIONS: The discovery-phase data generated herein has provided a basis for the identification of candidates with the greatest potential to serve as novel serum biomarkers specific to inflammatory arthritides. Moreover, these findings facilitate the understanding of possible disease mechanisms specific to each subtype.

16.
BMC Musculoskelet Disord ; 20(1): 125, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909916

RESUMO

BACKGROUND: The synovial membrane adjacent to the articular cartilage is home to synovial mesenchymal progenitor cell (sMPC) populations that have the ability to undergo chondrogenesis. While it has been hypothesized that multiple subtypes of stem and progenitor cells exist in vivo, there is little evidence supporting this hypothesis in human tissues. Furthermore, in most of the published literature on this topic, the cells are cultured before derivation of clonal populations. This gap in the literature makes it difficult to determine if there are distinct MPC subtypes in human synovial tissues, and if so, if these sMPCs express any markers in vivo/in situ that provide information in regards to the function of specific MPC subtypes (e.g. cells with increased chondrogenic capacity)? Therefore, the current study was undertaken to determine if any of the classical MPC cell surface markers provide insight into the differentiation capacity of sMPCs. METHODS: Clonal populations of sMPCs were derived from a cohort of patients with hip osteoarthritis (OA) and patients at high risk to develop OA using indexed cell sorting. Tri-differentiation potential and cell surface receptor expression of the resultant clones was determined. RESULTS: A number of clones with distinct differentiation potential were derived from this cohort, yet the most common cell surface marker profile on MPCs (in situ) that demonstrated chondrogenic potential was determined to be CD90+/CD44+/CD73+. A validation cohort was employed to isolate cells with only this cell surface profile. Isolating cells directly from human synovial tissue with these three markers alone, did not enrich for cells with chondrogenic capacity. CONCLUSIONS: Therefore, additional markers are required to further discriminate the heterogeneous subtypes of MPCs and identify sMPCs with functional properties that are believed to be advantageous for clinical application.


Assuntos
Diferenciação Celular/fisiologia , Articulação do Quadril/citologia , Articulação do Quadril/fisiologia , Células-Tronco Mesenquimais/fisiologia , Membrana Sinovial/citologia , Membrana Sinovial/fisiologia , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
BMC Musculoskelet Disord ; 19(1): 39, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402254

RESUMO

BACKGROUND: Inflammation is associated with the onset and progression of osteoarthritis in multiple joints. It is well known that mechanical properties differ between different joints, however, it remains unknown if the inflammatory process is similar/distinct in patients with hip vs. knee OA. Without complete understanding of the role of any specific cytokine in the inflammatory process, understanding the 'profile' of inflammation in a given patient population is an essential starting point. The aim of this study was to identify serum cytokine profiles in hip Osteoarthritis (OA), and investigate the association between cytokine concentrations and clinical measurements within this patient population and compare these findings to knee OA and healthy control cohorts. METHODS: In total, 250 serum samples (100 knee OA, 50 hip OA and 100 control) and 37 synovial fluid samples (8 knee OA, 14 hip OA and 15 control) were analyzed using a multiplex ELISA based approach. Synovial biopsies were also obtained and examined for specific cytokines. Pain, physical function and activity within the hip OA cohort were examined using the HOOS, SF-36, HHS and UCLA outcome measures. RESULTS: The three cohorts showed distinct serum cytokine profiles. EGF, FGF2, MCP3, MIP1α, and IL8 were differentially expressed between hip and knee OA cohorts; while FGF2, GRO, IL8, MCP1, and VEGF were differentially expressed between hip OA and control cohorts. Eotaxin, GRO, MCP1, MIP1ß, VEGF were differentially expressed between knee OA and control cohorts. EGF, IL8, MCP1, MIP1ß were differentially expressed in synovial fluid from a sub-set of patients from each cohort. Specifically within the hip OA cohort, IL-6, MDC and IP10 were associated with pain and were also found to be present in synovial fluid and synovial membrane (except IL-6) of patients with hip OA. CONCLUSION: OA may include different inflammatory subtypes according to affected joints and distinct inflammatory processes may drive OA in these joints. IL6, MDC and IP10 are associated with hip OA pain and these proteins may be able to provide additional information regarding pain in hip OA patients.


Assuntos
Citocinas/sangue , Mediadores da Inflamação/sangue , Osteoartrite do Quadril/sangue , Osteoartrite do Joelho/sangue , Dor/sangue , Líquido Sinovial/metabolismo , Adulto , Idoso , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Coortes , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/diagnóstico , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/metabolismo , Dor/diagnóstico , Dor/metabolismo , Medição da Dor/métodos
18.
BMC Cell Biol ; 18(1): 32, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29137597

RESUMO

BACKGROUND: Self-renewal and differentiation of embryonic stem cells (ESCs) is directed by biological and/or physical cues that regulate multiple signaling cascades. We have previously shown that mESCs seeded in a type I collagen matrix demonstrate a loss of pluripotent marker expression and differentiate towards an osteogenic lineage. In this study, we examined if this effect was mediated in part through Arginylglycylaspartic acid (RGD) dependent integrin activity and/or mechano-transduction. RESULTS: The results from this study suggest that mESC interaction with the local microenvironment through RGD dependent integrins play a role in the regulation of mESC core transcription factors (TF), Oct-4, Sox 2 and Nanog. Disruption of this interaction with a cyclic RGD peptide (cRGDfC) was sufficient to mimic the effect of a mechanical stimulus in terms of pluripotent gene expression, specifically, we observed that supplementation with cRGDfC, or mechanical stimulus, significantly influenced mESC pluripotency by down-regulating core transcription factors. Moreover, our results indicated that the presence of the cRGDfC peptide inhibited integrin expression and up-regulated early lineage markers (mesoderm and ectoderm) in a Leukemia inhibitory factor (LIF) dependent manner. When cRGDfC treated mESCs were injected in Severe combined immunodeficiency (SCID) mice, no tissue growth and/or teratoma formation was observed, suggesting that the process of mESC tumor formation in vivo is potentially dependent on integrin interaction. CONCLUSIONS: Overall, the disruption of cell-integrin interaction via cRGDfC peptide can mimic the effect of mechanical stimulation on mESC pluripotency gene expression and also inhibit the tumorigenic potential of mESCs in vivo.


Assuntos
Fenômenos Biomecânicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Integrinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/fisiologia , Peptídeos Cíclicos/farmacologia , Fatores de Transcrição/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Colágeno Tipo I/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Integrinas/genética , Camundongos , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
19.
BMC Musculoskelet Disord ; 18(1): 435, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121899

RESUMO

BACKGROUND: p21(WAF1/CIP1/SDI1), a cyclin dependent kinase inhibitor has been shown to influence cell proliferation, differentiation and apoptosis; but more recently, p21 has been implicated in tissue repair. Studies on p21(-/-) knockout mice have demonstrated results that vary from complete regeneration and healing of tissue to attenuated healing. There have however been no studies that have evaluated the role of p21 inhibition in bone healing and remodeling. METHODS: The current study employs a burr-hole fracture model to investigate bone regeneration subsequent to an injury in a p21-/- mouse model. p21-/- and C57BL/6 mice were subjected to a burr-hole fracture on their proximal tibia, and their bony parameters were measured over 4 weeks via in vivo µCT scanning. RESULTS: p21-/- mice present with enhanced healing from week 1 through week 4. Differences in bone formation and resorption potential between the two mouse models are assessed via quantitative and functional assays. While the µCT analysis indicates that p21-/- mice have enhanced bone healing capabilities, it appears that the differences observed may not be due to the function of osteoblasts or osteoclasts. Furthermore, no differences were observed in the differentiation of progenitor cells (mesenchymal or monocytic) into osteoblasts or osteoclasts respectively. CONCLUSIONS: Therefore, it remains unknown how p21 is regulating enhanced fracture repair and further studies are required to determine which cell type(s) are responsible for this regenerative phenotype.


Assuntos
Regeneração Óssea , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Fraturas da Tíbia , Microtomografia por Raio-X
20.
Proc Natl Acad Sci U S A ; 111(38): 13936-41, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25205813

RESUMO

CXCR6-GFP(+) cells, which encompass 70% invariant natural killer T cells (iNKT cells), have been found primarily patrolling inside blood vessels in the liver. Although the iNKT cells fail to interact with live pathogens, they do respond to bacterial glycolipids presented by CD1d on liver macrophage that have caught the microbe. In contrast, in this study using dual laser multichannel spinning-disk intravital microscopy of joints, the CXCR6-GFP, which also made up 60-70% iNKT cells, were not found in the vasculature but rather closely apposed to and surrounding the outside of blood vessels, and to a lesser extent throughout the extravascular space. These iNKT cells also differed in behavior, responding rapidly and directly to joint-homing pathogens like Borrelia burgdorferi, which causes Lyme disease. These iNKT cells interacted with B. burgdorferi at the vessel wall and disrupted dissemination attempts by these microbes into joints. Successful penetrance of B. burgdorferi out of the vasculature and into the joint tissue was met by a lethal attack by extravascular iNKT cells through a granzyme-dependent pathway, an observation also made in vitro for iNKT cells from joint but not liver or spleen. These results suggest a novel, critical extravascular iNKT cell immune surveillance in joints that functions as a cytotoxic barrier and explains a large increase in pathogen burden of B. burgdorferi in the joint of iNKT cell-deficient mice, and perhaps the greater susceptibility of humans to this pathogen because of fewer iNKT cells in human joints.


Assuntos
Borrelia burgdorferi/imunologia , Imunidade Celular , Artropatias/imunologia , Articulações/imunologia , Doença de Lyme/imunologia , Células T Matadoras Naturais/imunologia , Animais , Granzimas/genética , Granzimas/imunologia , Humanos , Artropatias/genética , Artropatias/microbiologia , Artropatias/patologia , Articulações/microbiologia , Articulações/patologia , Fígado/imunologia , Fígado/patologia , Doença de Lyme/genética , Doença de Lyme/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Células T Matadoras Naturais/patologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Baço/imunologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA