Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 74(9): 2115-2123, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27842031

RESUMO

The production of zero-valent iron nanoparticles, using extracts from natural products, represents a green and environmentally friendly method. Synthesis of 'green' zero-valent nanoparticles (nZVI) using oak and mulberry leaf extracts (OL-nZVI and ML-nZVI) proved to be a promising approach for Ni(II) and Cu(II) removal from aqueous solutions. Characterization of the produced green nZVI materials had been conducted previously and confirmed the formation of nanosize zero-valent iron particles within the size range of 10-30 nm, spherical with minimum agglomeration observed by transmission electron microscopy and scanning electron microscope morphology measurements. Batch experiments revealed that the adsorption kinetics followed a pseudo-second-order rate equation. The obtained adsorption isotherm data could be well described by the Freundlich model and OL-nZVI showed higher adsorption capacity for Ni(II) removal than ML-nZVI, while ML-nZVI adsorption capacity was higher for Cu(II). In addition, investigation of the pH effect showed that varying the initial pH value had a great effect on Ni(II) and Cu(II) removal. Adsorbed amounts of Ni(II) and Cu(II) increased with pH increase to pH 7.0 and 8.0. This study indicated that nZVI produced by a low-cost and non-toxic method with oak and mulberry leaf extracts could be used as a new material for remediation of water matrices contaminated with Ni(II) and Cu(II).


Assuntos
Cobre/química , Morus/química , Níquel/química , Extratos Vegetais/química , Quercus/química , Adsorção , Ferro/química , Cinética , Nanopartículas/química , Folhas de Planta/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA