Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36101359

RESUMO

Flavescence dorée (FD) is a grapevine disease caused by 'Candidatus Phytoplasma vitis' (FDp), which is epidemically transmitted by the Nearctic leafhopper Scaphoideus titanus. In this study, we applied dendrochronological techniques to analyse the response to FDp infections in terms of wood ring widths and anatomical structures of the xylem and phloem tissues of the trunk of the susceptible grapevine cultivar 'Chardonnay.' As a rule, grapevines are susceptible to water shortage and reduce their growth in diameter in case of summer drought. In the season of the external expression of FD symptoms, however, the ring width reductions are extreme and supersede any drought-induced effects. In addition, the anatomy of the phloem tissue in the year of the FD symptom expression appears heavily disarranged. Moreover, in the most suffering individuals, the xylem formation remains incomplete and mostly limited to the early wood tissue. In conclusion, even though the FD phytoplasma does not inhabit and replicate inside the xylem tissue, our results confirm existing indirect inhibiting effects on the ring growth and the xylem tissue formation in FDp-infected grapevines.

2.
Ecol Evol ; 7(13): 4745-4754, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28690804

RESUMO

Species assemblages are the results of various processes, including dispersion and habitat filtering. Disentangling the effects of these different processes is challenging for statistical analysis, especially when biotic interactions should be considered. In this study, we used plants (producers) and leafhoppers (phytophagous) as model organisms, and we investigated the relative importance of abiotic versus biotic factors that shape community assemblages, and we infer on their biotic interactions by applying three-step statistical analysis. We applied a novel statistical analysis, that is, multiblock Redundancy Analysis (mbRA, step 1) and showed that 51.8% and 54.1% of the overall variation in plant and leafhopper assemblages are, respectively, explained by the two multiblock models. The most important blocks of variables to explain the variations in plant and leafhopper assemblages were local topography and biotic factors. Variation partitioning analysis (step 2) showed that pure abiotic filtering and pure biotic processes were relatively less important than their combinations, suggesting that biotic relationships are strongly structured by abiotic conditions. Pairwise co-occurrence analysis (step 3) on generalist leafhoppers and the most common plants identified 40 segregated species pairs (mainly between plant species) and 16 aggregated pairs (mainly between leafhopper species). Pairwise analysis on specialist leafhoppers and potential host plants clearly revealed aggregated patterns. Plant segregation suggests heterogeneous resource availability and competitive interactions, while leafhopper aggregation suggests host feeding differentiation at the local level, different feeding microhabitats on host plants, and similar environmental requirements of the species. Using the novel mbRA, we disentangle for the first time the relative importance of more than five distinct groups of variables shaping local species communities. We highlighted the important role of abiotic processes mediated by bottom-up effects of plants on leafhopper communities. Our results revealed that in-field structure diversification and trophic interactions are the main factors causing the co-occurrence patterns observed.

3.
Theory Biosci ; 129(1): 53-69, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20502984

RESUMO

"Fire regime" has become, in recent decades, a key concept in many scientific domains. In spite of its wide spread use, the concept still lacks a clear and wide established definition. Many believe that it was first discussed in a famous report on national park management in the United States, and that it may be simply defined as a selection of a few measurable parameters that summarize the fire occurrence patterns in an area. This view has been uncritically perpetuated in the scientific community in the last decades. In this paper we attempt a historical reconstruction of the origin, the evolution and the current meaning of "fire regime" as a concept. Its roots go back to the 19th century in France and to the first half of the 20th century in French African colonies. The "fire regime" concept took time to evolve and pass from French into English usage and thus to the whole scientific community. This coincided with a paradigm shift in the early 1960s in the United States, where a favourable cultural, social and scientific climate led to the natural role of fires as a major disturbance in ecosystem dynamics becoming fully acknowledged. Today the concept of "fire regime" refers to a collection of several fire-related parameters that may be organized, assembled and used in different ways according to the needs of the users. A structure for the most relevant categories of parameters is proposed, aiming to contribute to a unified concept of "fire regime" that can reconcile the physical nature of fire with the socio-ecological context within which it occurs.


Assuntos
Ecossistema , Incêndios/história , África , França , História do Século XIX , História do Século XX , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA