Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7964): 249-251, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198488

RESUMO

H II regions are ionized nebulae surrounding massive stars. They exhibit a wealth of emission lines that form the basis for estimation of chemical composition. Heavy elements regulate the cooling of interstellar gas, and are essential to the understanding of several phenomena such as nucleosynthesis, star formation and chemical evolution1,2. For over 80 years3, however, a discrepancy exists of a factor of around two between heavy-element abundances derived from collisionally excited lines and those from the weaker recombination lines, which has thrown our absolute abundance determinations into doubt4,5. Here we report observational evidence that there are temperature inhomogeneities within the gas, quantified by t2 (ref. 6). These inhomogeneities affect only highly ionized gas and cause the abundance discrepancy problem. Metallicity determinations based on collisionally excited lines must be revised because these may be severely underestimated, especially in regions of lower metallicity such as those recently observed with the James Webb Space Telescope in high-z galaxies7-9. We present new empirical relations for estimation of temperature and metallicity, critical for a robust interpretation of the chemical composition of the Universe over cosmic time.

2.
Nature ; 619(7969): 269-271, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380768

RESUMO

Galaxies in the Universe are distributed in a web-like structure characterized by different large-scale environments: dense clusters, elongated filaments, sheetlike walls and under-dense regions, called voids1-5. The low density in voids is expected to affect the properties of their galaxies. Indeed, previous studies6-14 have shown that galaxies in voids are, on average, bluer and less massive, and have later morphologies and higher current star formation rates than galaxies in denser large-scale environments. However, it has never been observationally proved that the star formation histories (SFHs) in voids are substantially different from those in filaments, walls and clusters. Here we show that void galaxies have had, on average, slower SFHs than galaxies in denser large-scale environments. We also find two main SFH types present in all the environments: 'short-timescale' galaxies are not affected by their large-scale environment at early times but only later in their lives; 'long-timescale' galaxies have been continuously affected by their environment and stellar mass. Both types have evolved more slowly in voids than in filaments, walls and clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA