RESUMO
INTRODUCTION: Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics. MATERIALS AND METHODS: DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism. RESULTS: All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA. DISCUSSION: Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.
Assuntos
Aneuploidia , Variações do Número de Cópias de DNA , Gravidez , Feminino , Humanos , Análise Custo-Benefício , Sequenciamento Completo do Genoma/métodos , DNARESUMO
Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.
Assuntos
Variações do Número de Cópias de DNA , Sequenciamento Completo do Genoma , Humanos , Variações do Número de Cópias de DNA/genética , Sequenciamento Completo do Genoma/economia , Sequenciamento Completo do Genoma/métodos , Brasil , Masculino , Feminino , Criança , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Análise Custo-Benefício , Análise em Microsséries/economia , Análise em Microsséries/métodos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/diagnóstico , Pré-Escolar , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico , Países em Desenvolvimento , Adolescente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Testes Genéticos/economia , Testes Genéticos/métodosRESUMO
OBJECTIVE: To report the effectiveness of early molecular diagnosis in the clinical management of rare diseases, presenting 8 patients with 8p23.1DS who have clinical features that overlap the phenotypic spectrum of 22q11.2DS. STUDY DESIGN: This report is part of a previous study that aims to provide a precocious molecular diagnosis of the 22q11.2 deletion syndrome in 118 infants with congenital heart disease. To confirm the clinical diagnosis, patients underwent comparative genomic screening by the multiplex ligation-dependent probe amplification (MLPA) assay with the SALSA MLPA probemix kits P064-B2, P036-E1, P070-B2, P356-A1, and P250- B1. Subsequently, the patients performed the genomic microarray using the Infinium CytoSNP-850K BeadChip to confirm the deletion, determine the breakpoints of the deletion, and search for genomic copy number variations. RESULTS: MLPA performed with 3 different kits revealed the 8p23.1 typical deletion involving the PPP1R3B, MSRA, and GATA4 genes in the 5 patients. The array analysis was performed on these 5 patients and 3 other patients (8 patients) who also had clinical suspicion of 22q11 deletion (8 patients) allowed a precise definition of the breakpoints and excluded other genomic abnormalities. CONCLUSIONS: Cytogenomic screening was efficient in establishing a differential diagnosis and ruling out the presence of other concomitant syndromes. The clinical picture of the 8p23.1 deletion syndrome is challenging; however, cytogenomic tools can provide an exact diagnosis and help to clarify the genotype-phenotype complexity of these patients. Our reports underline the importance of early diagnosis and clinical follow-up of microdeletion syndromes.
Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , Humanos , Deleção Cromossômica , Variações do Número de Cópias de DNA , Síndrome de DiGeorge/diagnóstico , Fenótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genéticaRESUMO
Mosaic segmental and whole chromosome copy number alterations are postzygotic variations known to be associated with several disorders. We have previously presented an efficient targeted sequencing approach to simultaneously detect point mutations and copy number variations (CNVs). In this study, we evaluated the efficiency of this approach to detect mosaic CNVs, using seven postnatal and 19 tumor samples, previously characterized by chromosomal microarray analyses (CMA). These samples harbored a total of 28 genomic imbalances ranging in size from 0.68 to 171 Mb, and present in 10-80% of the cells. All CNV regions covered by the platform were correctly identified in postnatal samples, and only seven out of 19 CNVs from tumor samples were not identified either because of a lack of target probes in the affected genomic regions or an absence of minimum reads for an alteration call. These results demonstrate that, in a research setting, this is a robust approach for detecting mosaicism in cases of segmental and whole chromosome alterations. Although the current sequencing platform presented a resolution similar to genomic microarrays, it is still necessary to further validate this approach in a clinical setting in order to replace CMA and sequencing analyses by a single test.
Assuntos
Variações do Número de Cópias de DNA , Testes Genéticos/métodos , Mosaicismo , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/genética , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Chromosomal microarray analyses (CMA) have greatly increased both the yield and diagnostic accuracy of postnatal analysis; it has been used as a first-tier cytogenetic test in patients with intellectual disability, autism spectrum disorder, and multiple congenital abnormalities. During the last 15 years, we performed CMA in approximately 8,000 patients with neurodevelopmental and/or congenital disorders, of which 13 (0.16%) genetically catastrophic complex chromosomal rearrangements were identified. These ultrarare rearrangements showed clustering of breakpoints, characteristic of chromoanagenesis events. Al1 13 complex events display underlying formation mechanisms, originating either by a synchronization of the shattering of clustered chromosome regions in which regional asynchrony of DNA replication may be one of the main causes of disruption. We provide an overview of the copy number profiling in these patients. Although several previous studies have suggested that chromoanagenesis is often a genetic disease source in postnatal diagnostic screening, due to either the challenge of clinical interpretation of these complex rearrangements or the limitation of microarray resolution relative to the small size and complexity of chromogenic induced chromosome abnormalities, bringing further attention and to study its occurrence in the clinical setting is extremely important.
Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Anormalidades Múltiplas/epidemiologia , Adolescente , Adulto , Brasil/epidemiologia , Criança , Pré-Escolar , Transtornos Cromossômicos/epidemiologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Testes Diagnósticos de Rotina , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Cytogenetically detected inversions are generally assumed to be copy number and phenotypically neutral events. While nonallelic homologous recombination is thought to play a major role, recent data suggest the involvement of other molecular mechanisms in inversion formation. Using a combination of short-read whole-genome sequencing (WGS), 10X Genomics Chromium WGS, droplet digital polymerase chain reaction and array comparative genomic hybridization we investigated the genomic structure of 18 large unique cytogenetically detected chromosomal inversions and achieved nucleotide resolution of at least one chromosomal inversion junction for 13/18 (72%). Surprisingly, we observed that seemingly copy number neutral inversions can be accompanied by a copy-number gain of up to 350 kb and local genomic complexities (3/18, 17%). In the resolved inversions, the mutational signatures are consistent with nonhomologous end-joining (8/13, 62%) or microhomology-mediated break-induced replication (5/13, 38%). Our study indicates that short-read 30x coverage WGS can detect a substantial fraction of chromosomal inversions. Moreover, replication-based mechanisms are responsible for approximately 38% of those events leading to a significant proportion of inversions that are actually accompanied by additional copy-number variation potentially contributing to the overall phenotypic presentation of those patients.
Assuntos
Inversão Cromossômica , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Hibridização Genômica Comparativa , Feminino , Frequência do Gene , Haplótipos , Heterozigoto , Recombinação Homóloga , Humanos , Cariotipagem , Masculino , Linhagem , Sequenciamento Completo do GenomaRESUMO
The 17p13.1 microdeletion syndrome is a recently described genomic disorder with a core clinical phenotype of intellectual disability, poor to absent speech, dysmorphic features, and a constellation of more variable clinical features, most prominently microcephaly. We identified five subjects with copy-number variants (CNVs) on 17p13.1 for whom we performed detailed clinical and molecular studies. Breakpoint mapping and retrospective analysis of published cases refined the smallest region of overlap (SRO) for microcephaly to a genomic interval containing nine genes. Dissection of this phenotype in zebrafish embryos revealed a complex genetic architecture: dosage perturbation of four genes (ASGR1, ACADVL, DVL2, and GABARAP) impeded neurodevelopment and decreased dosage of the same loci caused a reduced mitotic index in vitro. Moreover, epistatic analyses in vivo showed that dosage perturbations of discrete gene pairings induce microcephaly. Taken together, these studies support a model in which concomitant dosage perturbation of multiple genes within the CNV drive the microcephaly and possibly other neurodevelopmental phenotypes associated with rearrangements in the 17p13.1 SRO.
Assuntos
Anormalidades Múltiplas/genética , Dosagem de Genes/genética , Deficiência Intelectual/genética , Microcefalia/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose , Receptor de Asialoglicoproteína/genética , Sequência de Bases , Linhagem Celular , Pontos de Quebra do Cromossomo , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Proteínas Desgrenhadas , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Fosfoproteínas/genética , Estudos Retrospectivos , Análise de Sequência de DNA , Síndrome de Smith-Magenis , Síndrome , Peixe-ZebraRESUMO
This article reports a patient with a de novo â¼ 9.32 Mb duplication at 16p13.3 and a â¼ 71 Kb deletion at 22q13.33. The patient was followed from 1 month old to 3 years and 8 months of age and presented typical features of the 16p13.3 duplication syndrome. In addition, the patient presents a portal cavernoma, an alteration rarely reported in this condition. Renal agenesis was detected as additional developmental defect. After genomic array and FISH analysis, the karyotype was 46,XX,ins(22;16)(q13;p13.2p13.3). ish ins(22;16)(RP11-35P16+, RP11-27M24+). arr16p13.2p13.3(85,880-9,413,353)×3 dn arr22q13.33 (51,140,789-51,197,838)×1 dn. The authors provide a comprehensive review of the literature. This approach shed light on the genotype-phenotype correlation.
Assuntos
Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 22 , Estudos de Associação Genética , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Fácies , Feminino , Genótipo , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , FenótipoRESUMO
This study investigated for the first time the genomewide DNA methylation changes of noncoding RNA genes in the temporal cortex samples from individuals with Alzheimer's disease (AD). The methylome of 10 AD individuals and 10 age-matched controls were obtained using Illumina 450 K methylation array. A total of 2,095 among the 15,258 interrogated noncoding RNA CpG sites presented differential methylation, 161 of which were associated with miRNA genes. In particular, 10 miRNA CpG sites that were found to be hypermethylated in AD compared to control brains represent transcripts that have been previously associated with the disease. This miRNA set is predicted to target 33 coding genes from the neuregulin receptor complex (ErbB) signaling pathway, which is required for the neurons myelination process. For 6 of these miRNA genes (MIR9-1, MIR9-3, MIR181C, MIR124-1, MIR146B, and MIR451), the hypermethylation pattern is in agreement with previous results from literature that shows downregulation of miR-9, miR-181c, miR-124, miR-146b, and miR-451 in the AD brain. Our data implicate dysregulation of miRNA methylation as contributor to the pathogenesis of AD.
Assuntos
Doença de Alzheimer/metabolismo , Metilação de DNA , MicroRNAs/metabolismo , Lobo Temporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino , MicroRNAs/genética , Lobo Temporal/patologiaRESUMO
Rhabdomyosarcomas have been described in association with thyroid disease, dermatomyositis, Duchenne muscular dystrophy, and in muscular dystrophy models but not in patients with ryanodine receptor-1 gene (RYR1) pathogenic variants. We described here an 18-year-old male who reported a cervical nodule. Magnetic resonance images revealed a mass in the ethmoidal sinus corresponding to rhabdomyosarcoma. As his father died from malignant hyperthermia (MH), an in vitro contracture test was conducted and was positive for MH susceptibility. Muscle histopathological analysis in the biopsy showed the presence of cores. Molecular analysis using NGS sequencing identified germline variants in the RYR1 and ASPSCR1 (alveolar soft part sarcoma) genes. This report expands the spectrum of diseases associated with rhabdomyosarcomas and a possible differential diagnosis of soft tissue tumors in patients with RYR1 variants.
Assuntos
Hipertermia Maligna , Doenças Musculares , Rabdomiossarcoma , Masculino , Humanos , Adolescente , Hipertermia Maligna/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Doenças Musculares/genética , Rabdomiossarcoma/genética , Fatores de Transcrição , Células Germinativas/patologia , Peptídeos e Proteínas de Sinalização IntracelularRESUMO
Intellectual disability (ID) is an early onset impairment in cognitive functioning and adaptive behavior, affecting approximately 1% of the population worldwide. Extreme skewing of X-chromosome inactivation (XCI) can be associated with ID phenotypes caused by pathogenic variants in the X chromosome. We analyzed the XCI pattern in blood samples of 194 women with idiopathic ID, using the androgen receptor gene (AR) methylation assay. Among the 136 patients who were informative, 11 (8%) presented with extreme or total XCI skewing (≥ 90%), which was significantly higher than expected by chance. Whole-exome data obtained from these 11 patients revealed the presence of dominant pathogenic variants in eight of them, all sporadic cases, resulting in a molecular diagnostic rate of 73% (8/11 patients). All variants were mapped to ID-related genes with dominant phenotypes: four variants in the X-linked genes DDX3X (an XCI escape gene; two cases), WDR45, and PDHA1, and four variants in the autosomal genes KCNB1, CTNNB1, YY1, and ANKRD11. Three of the autosomal genes had no obvious correlation with the observed XCI skewing. However, YY1 is a known transcriptional repressor that acts in the binding of the XIST long noncoding RNA on the inactive X chromosome, providing a mechanistic link between the pathogenic variant and the detected skewed XCI in the carrier. These data confirm that extreme XCI skewing in females with ID is highly indicative of causative X-linked pathogenic variants, and point to the possibility of identifying causative variants in autosomal genes with a XCI role.
Assuntos
Deficiência Intelectual , Feminino , Humanos , Deficiência Intelectual/genética , Inativação do Cromossomo X/genética , Fenótipo , Genes Ligados ao Cromossomo X , Cromossomos , Proteínas de Transporte/genéticaRESUMO
BACKGROUND: Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. METHODS: We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. RESULTS: We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9-19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. CONCLUSION: This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility.
Assuntos
Proteína BRCA1/genética , Deleção de Genes , Genes BRCA1 , Síndrome de Li-Fraumeni/genética , Adulto , Neoplasias da Mama/genética , Aberrações Cromossômicas , Mapeamento Cromossômico , Variações do Número de Cópias de DNA , Feminino , Humanos , Pessoa de Meia-Idade , LinhagemRESUMO
Objective: Most children with short stature remain without an etiologic diagnosis after extensive clinical and laboratory evaluation and are classified as idiopathic short stature (ISS). This study aimed to determine the diagnostic yield of a multigene analysis in children classified as ISS. Design and methods: We selected 102 children with ISS and performed the genetic analysis as part of the initial investigation. We developed customized targeted panel sequencing, including all genes already implicated in the isolated short-stature phenotype. Rare and deleterious single nucleotide or copy number variants were assessed by bioinformatic tools. Results: We identified 20 heterozygous pathogenic (P) or likely pathogenic (LP) genetic variants in 17 of 102 patients (diagnostic yield = 16.7%). Three patients had more than one P/LP genetic alteration. Most of the findings were in genes associated with the growth plate differentiation: IHH (n = 4), SHOX (n = 3), FGFR3 (n = 2), NPR2 (n = 2), ACAN (n = 2), and COL2A1 (n = 1) or involved in the RAS/MAPK pathway: NF1 (n = 2), PTPN11 (n = 1), CBL (n = 1), and BRAF (n = 1). None of these patients had clinical findings to guide a candidate gene approach. The diagnostic yield was higher among children with severe short stature (35% vs 12.2% for height SDS ≤ or > -3; P = 0.034). The genetic diagnosis had an impact on clinical management for four children. Conclusion: A multigene sequencing approach can determine the genetic etiology of short stature in up to one in six children with ISS, removing the term idiopathic from their clinical classification.
RESUMO
Chromosomal microarray analysis (CMA) has been recommended and practiced routinely since 2010 both in the USA and Europe as the first-tier cytogenetic test for patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. However, in Brazil, the use of CMA is still limited, due to its high cost and complexity in integrating the results from both the private and public health systems. Although Brazil has one of the world's largest single-payer public healthcare systems, nearly all patients referred for CMA come from the private sector, resulting in only a small number of CMA studies in Brazilian cohorts. To date, this study is by far the largest Brazilian cohort (n = 5788) studied by CMA and is derived from a joint collaboration formed by the University of São Paulo and three private genetic diagnostic centers to investigate the genetic bases of neurodevelopmental disorders and congenital abnormalities. We identified 2,279 clinically relevant CNVs in 1886 patients, not including the 26 cases of UPD found. Among detected CNVs, the corresponding frequency of each category was 55.6% Pathogenic, 4.4% Likely Pathogenic and 40% VUS. The diagnostic yield, by taking into account Pathogenic, Likely Pathogenic and UPDs, was 19.7%. Since the rational for the classification is mostly based on Mendelian or highly penetrant variants, it was not surprising that a second event was detected in 26% of those cases of predisposition syndromes. Although it is common practice to investigate the inheritance of VUS in most laboratories around the world to determine the inheritance of the variant, our results indicate an extremely low cost-benefit of this approach, and strongly suggest that in cases of a limited budget, investigation of the parents of VUS carriers using CMA should not be prioritized.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Brasil/epidemiologia , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Análise em Microsséries , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/genéticaRESUMO
BACKGROUND: MUTYH-associated polyposis (MAP) is a recessive, hereditary, colorectal cancer-predisposing syndrome caused by biallelic mutations in the MUTYH gene. Most MUTYH pathogenic variants are missense mutations, and until recently no gross genomic deletions had been described. CASE PRESENTATION: We have identified a large deletion in the MUTYH gene: a > 4.2 kb deletion encompassing exons 4-16. This is the second description of this rearrangement, which has been recently described as the first large deletion in this gene. The clinically suspected MAP patient was homozygous for this mutation and presented with no amplification products for 14 exons of MUTYH on initial screening. Deletion breakpoints were refined to base pair level through array comparative genomic hybridization (aCGH) analysis followed by sequencing. The identified breakpoints were located within intron 3 and 146 bp downstream of the 3' end of the gene, with the presence of an AluJr element adjacent to the distal breakpoint. The presence of a 2 bp insertion at the junction suggests the involvement of the non-homologous end joining (NHEJ) repair mechanism, possibly facilitated by rearrangement-promoting elements. Examination of the MUTYH locus revealed a high Alu density that may make this region prone to rearrangements. CONCLUSION: Large deletions are a possible mechanism for loss of function of the MUTYH gene, and investigation of such mutations may be important in identifying causative mutations in MAP patients.
Assuntos
Polipose Adenomatosa do Colo/genética , DNA Glicosilases/genética , Deleção de Sequência , Elementos Alu/genética , Sequência de Bases , Hibridização Genômica Comparativa , Éxons , Feminino , Homozigoto , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neoplasias Retais/genéticaRESUMO
Array-CGH enables the detection of submicroscopic chromosomal deletions and duplications and leads to an accurate delineation of the imbalances, raising the possibility of genotype to phenotype and mapping minimal critical regions associated with particular patterns of clinical features. We report here on four patients sharing common clinical features (psychomotor retardation, coarse facies and ocular anomalies), with proximal 5q deletions identified by oligo array-CGH. The deletions range from 5.75 to 17.26-Mb in size and occurred de novo. A common 2.63-Mb region between the deletions described here can be defined in 5q12.1 (59,390,122-62,021,754 bp from 5pter, hg18) and includes 12 genes. Among them, KIF2A, which encodes a kinesin superfamily protein, is a particularly interesting candidate for the phenotype, as it suppresses the growth of axonal collateral branches and is involved in normal brain development. Ocular defects, albeit unspecific, seem to be common in the 5q12.1 deletion. Identification of additional cases of deletions involving the 5q12.1 region will allow more accurate genotype-phenotype correlations.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 5 , Anormalidades do Olho/genética , Deficiência Intelectual/genética , Fenótipo , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Ordem dos Genes , Estudos de Associação Genética , Humanos , MasculinoRESUMO
Chromoanagenesis is a descriptive term that encompasses classes of catastrophic mutagenic processes that generate localized and complex chromosome rearrangements in both somatic and germline genomes. Herein, we describe a 5-year-old female presenting with a constellation of clinical features consistent with a clinical diagnosis of Coffin-Siris syndrome 1 (CSS1). Initial G-banded karyotyping detected a 90-Mb pericentric and a 47-Mb paracentric inversion on a single chromosome. Subsequent analysis of short-read whole-genome sequencing data and genomic optical mapping revealed additional inversions, all clustered on chromosome 6, one of them disrupting ARID1B for which haploinsufficiency leads to the CSS1 disease trait (MIM:135900). The aggregate structural variant data show that the resolved, the resolved derivative chromosome architecture presents four de novo inversions, one pericentric and three paracentric, involving six breakpoint junctions in what appears to be a shuffling of genomic material on this chromosome. Each junction was resolved to nucleotide-level resolution with mutational signatures suggestive of non-homologous end joining. The disruption of the gene ARID1B is shown to occur between the fourth and fifth exon of the canonical transcript with subsequent qPCR studies confirming a decrease in ARID1B expression in the patient versus healthy controls. Deciphering the underlying genomic architecture of chromosomal rearrangements and complex structural variants may require multiple technologies and can be critical to elucidating the molecular etiology of a patient's clinical phenotype or resolving unsolved Mendelian disease cases.
RESUMO
Mutations in KDM5C (lysine (K)-specific demethylase 5C) were causally associated with up to 3% of X-linked intellectual disability (ID) in males. By exome and Sanger sequencing, a novel frameshift KDM5C variant, predicted to eliminate the JmjC catalytic domain from the protein, was identified in two monozygotic twins and their older brother, which was inherited from their clinically normal mother, who had completely skewed X-inactivation. DNA methylation (DNAm) data were evaluated using the Illumina 450â¯K Methylation Beadchip arrays. Comparison of methylation levels between the three patients and male controls identified 399 differentially methylated CpG sites, which were enriched among those CpG sites modulated during brain development. Most of them were hypomethylated (72%), and located mainly in shores, whereas the hypermethylated CpGs were more represented in open sea regions. The DNAm changes did not differ between the monozygotic twins nor between them and their older sibling, all presenting a global hypomethylation, similar to other studies that associated DNA methylation changes to different KDM5C mutations. The 38 differentially methylated regions (DMRs) were enriched for H3K4me3 marks identified in developing brains. The remarkable similarity between the methylation changes in the monozygotic twins and their older brother is indicative that these epigenetic changes were mostly driven by the KDM5C mutation.
Assuntos
Encéfalo/metabolismo , Doenças em Gêmeos/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Gêmeos Monozigóticos/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Criança , Ilhas de CpG , Metilação de DNA , Doenças em Gêmeos/fisiopatologia , Epigênese Genética , Mutação da Fase de Leitura , Genes Ligados ao Cromossomo X/genética , Histonas/genética , Histonas/metabolismo , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Análise em Microsséries , Irmãos , Sequenciamento do ExomaRESUMO
Pediatric osteosarcoma outcomes have improved over the last decades; however, patients who do not achieve a full resection of the tumor, even after aggressive chemotherapy, have the worst prognosis. At a genetic level, osteosarcoma presents many alterations, but there is scarce information on alterations at metabolomic levels. Therefore, an untargeted nuclear magnetic resonance metabonomic approach was used to reveal blood serum alterations, when samples were taken from 21 patients with osteosarcoma aged from 12-20 (18, 86%) to 43 (3, 14%) years before any anticancer therapy were collected. The results showed that metabolites differed greatly between osteosarcoma and healthy control serum samples, especially in lipids, aromatic amino acids (phenylalanine and tyrosine), and histidine concentrations. Besides, most of the loading plots point to protons of the fatty acyls (-CH3 and -CH2-) from very-low- and low-density lipoproteins and cholesterol, as crucial metabolites for discrimination of the patients with osteosarcoma from the healthy samples. The relevance of blood lipids in osteosarcoma was highlighted when analyzed together with the somatic mutations disclosed in tumor samples from the same cohort of patients, where six genes linked to the cholesterol metabolism were found being altered too. The high consistency of the discrimination between osteosarcoma and healthy control blood serum suggests that nuclear magnetic resonance could be successfully applied for osteosarcoma diagnostic and prognostic purposes, which could ameliorate the clinical efficacy of therapy.
RESUMO
Most childhood cancers occur as isolated cases and show very different biological behavior when compared with cancers in adults. There are some solid tumors that occur almost exclusively in children among which stand out the embryonal solid tumors. These cancers main types are neuroblastoma, nephroblastoma (Wilms tumors), retinoblastoma and hepatoblastomas and tumors of the central nervous system (CNS). Embryonal solid tumors represent a heterogeneous group of cancers supposedly derived from undifferentiated cells, with histological features that resemble tissues of origin during embryogenesis. This key observation suggests that tumorigenesis might begin during early fetal or child life due to the errors in growth or pathways differentiation. There are not many literature data on genomic, transcriptomic, epigenetic, proteomic, or metabolomic differences in these types of cancers when compared to the omics- used in adult cancer research. Still, metabolomics by nuclear magnetic resonance (NMR) in childhood embryonal solid tumors research can contribute greatly to understand better metabolic pathways alterations and biology of the embryonal solid tumors and potential to be used in clinical applications. Different types of samples, such as tissues, cells, biofluids, mostly blood plasma and serum, can be analyzed by NMR to detect and identify cancer metabolic signatures and validated biomarkers using enlarged group of samples. The literature search for biomarkers points to around 20-30 compounds that could be associated with pediatric cancer as well as metastasis.