Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 524(7565): 322-4, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289203

RESUMO

It is widely held that the first step in forming gas-giant planets, such as Jupiter and Saturn, was the production of solid 'cores' each with a mass roughly ten times that of the Earth. Getting the cores to form before the solar nebula dissipates (in about one to ten million years; ref. 3) has been a major challenge for planet formation models. Recently models have emerged in which 'pebbles' (centimetre-to-metre-sized objects) are first concentrated by aerodynamic drag and then gravitationally collapse to form objects 100 to 1,000 kilometres in size. These 'planetesimals' can then efficiently accrete left-over pebbles and directly form the cores of giant planets. This model is known as 'pebble accretion'; theoretically, it can produce cores of ten Earth masses in only a few thousand years. Unfortunately, full simulations of this process show that, rather than creating a few such cores, it produces a population of hundreds of Earth-mass objects that are inconsistent with the structure of the Solar System. Here we report that this difficulty can be overcome if pebbles form slowly enough to allow the planetesimals to gravitationally interact with one another. In this situation, the largest planetesimals have time to scatter their smaller siblings out of the disk of pebbles, thereby stifling their growth. Our models show that, for a large and physically reasonable region of parameter space, this typically leads to the formation of one to four gas giants between 5 and 15 astronomical units from the Sun, in agreement with the observed structure of the Solar System.

2.
Proc Natl Acad Sci U S A ; 112(46): 14180-5, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26512109

RESUMO

Building the terrestrial planets has been a challenge for planet formation models. In particular, classical theories have been unable to reproduce the small mass of Mars and instead predict that a planet near 1.5 astronomical units (AU) should roughly be the same mass as Earth. Recently, a new model called Viscously Stirred Pebble Accretion (VSPA) has been developed that can explain the formation of the gas giants. This model envisions that the cores of the giant planets formed from 100- to 1,000-km bodies that directly accreted a population of pebbles-submeter-sized objects that slowly grew in the protoplanetary disk. Here we apply this model to the terrestrial planet region and find that it can reproduce the basic structure of the inner solar system, including a small Mars and a low-mass asteroid belt. Our models show that for an initial population of planetesimals with sizes similar to those of the main belt asteroids, VSPA becomes inefficient beyond ∼ 1.5 AU. As a result, Mars's growth is stunted, and nothing large in the asteroid belt can accumulate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA