Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Microbiol ; 23(8): 4646-4660, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34190392

RESUMO

Gas hydrates harbour gigatons of natural gas, yet their microbiomes remain understudied. We bioprospected 16S rRNA amplicons, metagenomes, and metaproteomes from methane hydrate-bearing sediments under Hydrate Ridge (offshore Oregon, USA, ODP Site 1244, 2-69 mbsf) for novel microbial metabolic and biosynthetic potential. Atribacteria sequences generally increased in relative sequence abundance with increasing sediment depth. Most Atribacteria ASVs belonged to JS-1-Genus 1 and clustered with other sequences from gas hydrate-bearing sediments. We recovered 21 metagenome-assembled genomic bins spanning three geochemical zones in the sediment core: the sulfate-methane transition zone, the metal (iron/manganese) reduction zone, and the gas hydrate stability zone. We found evidence for bacterial fermentation as a source of acetate for aceticlastic methanogenesis and as a driver of iron reduction in the metal reduction zone. In multiple zones, we identified a Ni-Fe hydrogenase-Na+ /H+ antiporter supercomplex (Hun) in Atribacteria and Firmicutes bins and in other deep subsurface bacteria and cultured hyperthermophiles from the Thermotogae phylum. Atribacteria expressed tripartite ATP-independent transporters downstream from a novel regulator (AtiR). Atribacteria also possessed adaptations to survive extreme conditions (e.g. high salt brines, high pressure and cold temperatures) including the ability to synthesize the osmolyte di-myo-inositol-phosphate as well as expression of K+ -stimulated pyrophosphatase and capsule proteins.


Assuntos
Sedimentos Geológicos , Metano , Archaea/genética , Filogenia , RNA Ribossômico 16S/genética
3.
BMC Genomics ; 19(1): 176, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499642

RESUMO

BACKGROUND: Increased reports of Neisseria meningitidis urethritis in multiple U.S. cities during 2015 have been attributed to the emergence of a novel clade of nongroupable N. meningitidis within the ST-11 clonal complex, the "U.S. NmNG urethritis clade". Genetic recombination with N. gonorrhoeae has been proposed to enable efficient sexual transmission by this clade. To understand the evolutionary origin and diversification of the U.S. NmNG urethritis clade, whole-genome phylogenetic analysis was performed to identify its members among the N. meningitidis strain collection from the Centers for Disease Control and Prevention, including 209 urogenital and rectal N. meningitidis isolates submitted by U.S. public health departments in eleven states starting in 2015. RESULTS: The earliest representatives of the U.S. NmNG urethritis clade were identified from cases of invasive disease that occurred in 2013. Among 209 urogenital and rectal isolates submitted from January 2015 to September 2016, the clade accounted for 189/198 male urogenital isolates, 3/4 female urogenital isolates, and 1/7 rectal isolates. In total, members of the clade were isolated in thirteen states between 2013 and 2016, which evolved from a common ancestor that likely existed during 2011. The ancestor contained N. gonorrhoeae-like alleles in three regions of its genome, two of which may facilitate nitrite-dependent anaerobic growth during colonization of urogenital sites. Additional gonococcal-like alleles were acquired as the clade diversified. Notably, one isolate contained a sequence associated with azithromycin resistance in N. gonorrhoeae, but no other gonococcal antimicrobial resistance determinants were detected. CONCLUSIONS: Interspecies genetic recombination contributed to the early evolution and subsequent diversification of the U.S. NmNG urethritis clade. Ongoing acquisition of N. gonorrhoeae alleles by the U.S. NmNG urethritis clade may facilitate the expansion of its ecological niche while also increasing the frequency with which it causes urethritis.


Assuntos
Gonorreia/microbiologia , Infecções Meningocócicas/epidemiologia , Neisseria gonorrhoeae/genética , Uretrite/complicações , Alelos , Feminino , Genoma Bacteriano , Gonorreia/epidemiologia , Gonorreia/genética , Humanos , Masculino , Infecções Meningocócicas/genética , Infecções Meningocócicas/microbiologia , Neisseria gonorrhoeae/isolamento & purificação , Neisseria meningitidis/classificação , Neisseria meningitidis/genética , Neisseria meningitidis/isolamento & purificação , Neisseria meningitidis/fisiologia , Filogenia , Recombinação Genética , Estados Unidos/epidemiologia , Uretrite/genética , Sequenciamento Completo do Genoma/métodos
4.
Int J Med Microbiol ; 308(4): 454-458, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29605532

RESUMO

Neisseria lactamica is a nonpathogenic commensal bacterium that is potentially associated with the development of natural immunity against N. meningitidis. However, the genetic variation present in natural populations of N. lactamica has not been fully investigated. To better understand its epidemiology and genetic variation, we studied N. lactamica carriage in 1200 students aged 11-19 years old in Salvador, Brazil. The carriage prevalence was 4.5% (54/1200), with no statistical difference among sex and age, although we observed a trend towards higher carriage prevalence among 11-year-old individuals. Whole genome sequence analysis revealed a high genetic diversity among the isolates, with the presence of 32 different STs, 28 (87.5%) of which were new. A total of 21/50 (42%) isolates belonged to three different clonal complexes. While none of the isolates contained nadA or fHpb alleles, we detected 21 FetA variants, 20 NhbA variants and two variants of PorB. The data provide detailed information on circulating N. lactamica isolates in adolescents in Brazil and are complementary to studies in other countries.


Assuntos
Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Neisseria lactamica/genética , Adolescente , Alelos , Proteínas da Membrana Bacteriana Externa/genética , Brasil/epidemiologia , El Salvador/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Epidemiologia Molecular , Neisseria lactamica/isolamento & purificação , Neisseria meningitidis/genética , Polimorfismo de Nucleotídeo Único , Porinas/genética , Estudantes , Sequenciamento Completo do Genoma , Adulto Jovem
5.
Clin Infect Dis ; 65(5): 756-763, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505234

RESUMO

BACKGROUND: Several clusters of serogroup C meningococcal disease among men who have sex with men (MSM) have been reported in the United States in recent years. The epidemiology and risk of meningococcal disease among MSM is not well described. METHODS: All meningococcal disease cases among men aged 18-64 years reported to the National Notifiable Disease Surveillance System between January 2012 and June 2015 were reviewed. Characteristics of meningococcal disease cases among MSM and men not known to be MSM (non-MSM) were described. Annualized incidence rates among MSM and non-MSM were compared through calculation of the relative risk and 95% confidence intervals. Isolates from meningococcal disease cases among MSM were characterized using standard microbiological methods and whole-genome sequencing. RESULTS: Seventy-four cases of meningococcal disease were reported among MSM and 453 among non-MSM. Annualized incidence of meningococcal disease among MSM was 0.56 cases per 100000 population, compared to 0.14 among non-MSM, for a relative risk of 4.0 (95% confidence interval [CI], 3.1-5.1). Among the 64 MSM with known status, 38 (59%) were infected with human immunodeficiency virus (HIV). HIV-infected MSM had 10.1 times (95% CI, 6.1-16.6) the risk of HIV-uninfected MSM. All isolates from cluster-associated cases were serogroup C sequence type 11. CONCLUSIONS: MSM are at increased risk for meningococcal disease, although the incidence of disease remains low. HIV infection may be an important factor for this increased risk. Routine vaccination of HIV-infected persons with a quadrivalent meningococcal conjugate vaccine in accordance with Advisory Committee on Immunization Practices recommendations should be encouraged.


Assuntos
Homossexualidade Masculina/estatística & dados numéricos , Infecções Meningocócicas/epidemiologia , Adolescente , Adulto , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Humanos , Incidência , Masculino , Infecções Meningocócicas/complicações , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
6.
Clin Infect Dis ; 65(1): 92-99, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481980

RESUMO

Background: Neisseria meningitidis (Nm) is a Gram-negative diplococcus that normally colonizes the nasopharynx and rarely infects the urogenital tract. On Gram stain of urethral exudates, Nm can be misidentified as the more common sexually transmitted pathogen Neisseria gonorrhoeae. Methods: In response to a large increase in cases of Nm urethritis identified among men presenting for screening at a sexually transmitted disease clinic in Columbus, Ohio, we investigated the epidemiologic characteristics of men with Nm urethritis and the molecular and phylogenetic characteristics of their Nm isolates. The study was conducted between 1 January and 18 November 2015. Results: Seventy-five Nm urethritis cases were confirmed by biochemical and polymerase chain reaction testing. Men with Nm urethritis were a median age of 31 years (interquartile range [IQR] = 24-38) and had a median of 2 sex partners in the last 3 months (IQR = 1-3). Nm cases were predominantly black (81%) and heterosexual (99%). Most had urethral discharge (91%), reported oral sex with a female in the last 12 months (96%), and were treated with a ceftriaxone-based regimen (95%). A minority (15%) also had urethral chlamydia coinfection. All urethral Nm isolates were nongroupable, ST-11 clonal complex (cc11), ET-15, and clustered together phylogenetically. Urethral Nm isolates were similar by fine typing (PorA P1.5-1,10-8, PorB 2-2, FetA F3-6), except 2, which had different PorB types (2-78 and 2-52). Conclusions: Between January and November 2015, 75 urethritis cases due to a distinct Nm clade occurred among primarily black, heterosexual men in Columbus, Ohio. Future urogenital Nm infection studies should focus on pathogenesis and modes of sexual transmission.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis , Uretrite/epidemiologia , Adulto , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino , Infecções Meningocócicas/tratamento farmacológico , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/efeitos dos fármacos , Neisseria meningitidis/genética , Ohio/epidemiologia , Uretrite/tratamento farmacológico , Uretrite/microbiologia , Adulto Jovem
7.
Appl Environ Microbiol ; 83(17)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667112

RESUMO

Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4 IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.

8.
Emerg Infect Dis ; 22(10): 1762-1768, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27649262

RESUMO

In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.


Assuntos
Genoma Bacteriano , Meningite Meningocócica/microbiologia , Neisseria meningitidis Sorogrupo C/genética , Neisseria meningitidis/genética , Antígenos de Bactérias/genética , Doenças Transmissíveis Emergentes , DNA Bacteriano , Farmacorresistência Bacteriana/genética , Epidemias , Variação Genética , Humanos , Meningite Meningocócica/epidemiologia , Tipagem Molecular , Neisseria meningitidis/isolamento & purificação , Neisseria meningitidis Sorogrupo C/isolamento & purificação , Níger/epidemiologia , Filogenia , Análise de Sequência de DNA , Sorotipagem
9.
MMWR Morb Mortal Wkly Rep ; 65(35): 939-40, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27606798

RESUMO

During March 4-August 11, 2016, 25 outbreak-associated cases of meningococcal disease, including two deaths (8% case-fatality ratio), were reported in Southern California. Twenty-four of the cases were caused by serogroup C Neisseria meningitidis (NmC) and one by N. meningitidis with an undetermined serogroup (Figure). On June 24, 2016, in response to this increase in NmC cases, primarily among men who have sex with men (MSM) in Los Angeles County, the city of Long Beach, and Orange County, the California Department of Public Health (CDPH) issued a press release and health advisory, declaring an outbreak of NmC in Southern California (1).


Assuntos
Surtos de Doenças , Homossexualidade Masculina , Meningite Meningocócica/epidemiologia , Neisseria meningitidis Sorogrupo C/isolamento & purificação , Adolescente , Adulto , Idoso , California/epidemiologia , Homossexualidade Masculina/estatística & dados numéricos , Humanos , Masculino , Meningite Meningocócica/microbiologia , Pessoa de Meia-Idade , Adulto Jovem
10.
MMWR Morb Mortal Wkly Rep ; 65(21): 550-2, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27254649

RESUMO

Neisseria meningitidis (Nm) urogenital infections, although less common than infections caused by Neisseria gonorrhoeae (Ng), have been associated with urethritis, cervicitis, proctitis, and pelvic inflammatory disease. Nm can appear similar to Ng on Gram stain analysis (gram-negative intracellular diplococci) (1-5). Because Nm colonizes the nasopharynx, men who receive oral sex (fellatio) can acquire urethral Nm infections (1,3,5). This report describes an increase in Nm-associated urethritis in men attending sexual health clinics in Columbus, Ohio, and Oakland County, Michigan.


Assuntos
Meningite Meningocócica/complicações , Neisseria meningitidis/isolamento & purificação , Uretrite/epidemiologia , Uretrite/microbiologia , Adolescente , Adulto , Instituições de Assistência Ambulatorial , Humanos , Masculino , Michigan/epidemiologia , Pessoa de Meia-Idade , Ohio/epidemiologia , Adulto Jovem
11.
Sci Rep ; 10(1): 632, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959912

RESUMO

Asymptomatic oropharyngeal carriage of Neisseria meningitidis peaks in adolescence and young adulthood. Following a meningococcal disease outbreak at a U.S. college, we profiled the oropharyngeal microbiomes of 158 students to identify associations between bacterial community composition and meningococcal carriage or risk factors for carriage, including male gender, smoking, and frequent social mixing. Metagenomic shotgun sequencing identified 268 bacterial taxa at the genus or species level, with Streptococcus, Veillonella, and Rothia species being most abundant. Microbiome composition showed weak associations with meningococcal carriage and risk factors for carriage. N. meningitidis abundance was positively correlated with that of Fusobacterium nucleatum, consistent with hypothesized propionic acid cross-feeding. Additional species had positive abundance correlations with N. meningitidis, including Aggregatibacter aphrophilus, Campylobacter rectus, Catonella morbi, Haemophilus haemolyticus, and Parvimonas micra. N. meningitidis abundance was negatively correlated with unidentified Veillonella species. Several of these species are commonly found in dental plaque, while N. meningitidis is primarily found in the pharynx, suggesting that ecological interactions extend throughout the oral cavity. Although risk factors for meningococcal carriage do not strongly impact most bacterial species in the oropharynx, variation in the upper respiratory tract microbiome may create conditions that are more or less favorable for N. meningitidis carriage.


Assuntos
Surtos de Doenças , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Interações Microbianas , Microbiota/fisiologia , Orofaringe/microbiologia , Estudantes , Universidades , Adolescente , Portador Sadio , Feminino , Humanos , Masculino , Neisseria meningitidis , Fatores de Risco , Fatores Sexuais , Fumar , Comportamento Social , Streptococcus , Veillonella , Adulto Jovem
13.
J Infect ; 79(5): 426-434, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505201

RESUMO

OBJECTIVES: Two Neisseria meningitidis serogroup B (NmB) vaccines are licensed in the United States. To estimate their potential coverage, we examined the vaccine antigen diversity among meningococcal isolates prior to vaccine licensure. METHODS: NmB vaccine antigen genes of invasive isolates collected in the U.S. from 2009 to 2014 were characterized by Sanger or whole-genome sequencing. RESULTS: During 2009-2014, the predominant antigen types have remained similar to those reported in 2000-2008 for NmB and 2006-2008 for NmC, NmY, with the emergence of a few new types. FHbp of subfamily B or variant 1 (B/v1) remained prevalent among NmB whereas FHbp of subfamily A or variant 2 and 3 (A/v2-3) were more prevalent among non-NmB. FHbp peptide 1 (B24/1.1) remains the most prevalent type in NmB. Full-length NadA peptide was detected in 26% of isolates, primarily in NmB and NmW. The greatest diversity of NhbA peptides was detected among NmB, with p0005 as the most prevalent type. CONCLUSIONS: The prevalence and diversity of the NmB vaccine antigens have remained stable with common antigen types persisting over time. The data collected prior to NmB vaccine licensure provide the baseline to understand the potential impact of NmB vaccines on antigen diversity and strain coverage.


Assuntos
Antígenos Virais/genética , Variação Genética , Meningite Meningocócica/epidemiologia , Meningite Meningocócica/microbiologia , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos Virais/análise , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neisseria meningitidis Sorogrupo B/classificação , Prevalência , Estados Unidos/epidemiologia , Adulto Jovem
14.
Sci Rep ; 8(1): 15803, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30361650

RESUMO

Although rare in the U.S., outbreaks due to Neisseria meningitidis do occur. Rapid, early outbreak detection is important for timely public health response. In this study, we characterized U.S. meningococcal isolates (N = 201) from 15 epidemiologically defined outbreaks (2009-2015) along with temporally and geographically matched sporadic isolates using multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), and six whole genome sequencing (WGS) based methods. Recombination-corrected maximum likelihood (ML) and Bayesian phylogenies were reconstructed to identify genetically related outbreak isolates. All WGS analysis methods showed high degree of agreement and distinguished isolates with similar or indistinguishable PFGE patterns, or the same strain genotype. Ten outbreaks were caused by a single strain; 5 were due to multiple strains. Five sporadic isolates were phylogenetically related to 2 outbreaks. Analysis of 9 outbreaks using timed phylogenies identified the possible origin and estimated the approximate time that the most recent common ancestor emerged for outbreaks analyzed. U.S. meningococcal outbreaks were caused by single- or multiple-strain introduction, with organizational outbreaks mainly caused by a clonal strain and community outbreaks by divergent strains. WGS can infer linkage of meningococcal cases when epidemiological links are uncertain. Accurate identification of outbreak-associated cases requires both WGS typing and epidemiological data.


Assuntos
Surtos de Doenças , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Sequenciamento Completo do Genoma , Eletroforese em Gel de Campo Pulsado , Humanos , Neisseria meningitidis/isolamento & purificação , Filogenia , Estudos Retrospectivos , Estados Unidos/epidemiologia
15.
PLoS One ; 12(9): e0185038, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931058

RESUMO

Characterization of meningococci isolated from the pharynx is essential towards understanding the dynamics of meningococcal carriage and disease. Meningococcal isolates, collected from adolescents resident in Salvador, Brazil during 2014, were characterized by multilocus sequence typing, genotyping or whole-genome sequencing. Most were nongroupable (61.0%), followed by genogroups B (11.9%) and Y (8.5%). We identified 34 different sequence types (STs), eight were new STs, distributed among 14 clonal complexes (cc), cc1136 represented 20.3% of the nongroupable isolates. The porA and fetA genotypes included P1.18,25-37 (11.9%), P1.18-1,3 (10.2%); F5-5 (23.7%), F4-66 (16.9%) and F1-7 (13.6%). The porB class 3 protein and the fHbp subfamily A (variants 2 and 3) genotypes were found in 93.0 and 71.0% of the isolates, respectively. NHBA was present in all isolates, and while most lacked NadA (94.9%), we detected the hyperinvasive lineages B:P1.19,15:F5-1:ST-639 (cc32); C:P1.22,14-6:F3-9:ST-3780 (cc103) and W:P1.5,2:F1-1:ST-11 (cc11). This is the first report on the genetic diversity and vaccine antigen prevalence among N. meningitidis carriage isolates in the Northeast of Brazil. This study highlights the need for ongoing characterization of meningococcal isolates following the introduction of vaccines and for determining public health intervention strategies.


Assuntos
Neisseria meningitidis/genética , Neisseria meningitidis/isolamento & purificação , Filogenia , Adesinas Bacterianas/genética , Adolescente , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Brasil , Proteínas de Transporte/genética , Portador Sadio , Criança , Variação Genética , Genótipo , Humanos , Tipagem de Sequências Multilocus , Porinas/genética , Adulto Jovem
16.
Front Microbiol ; 6: 85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717321

RESUMO

Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we estimated the half saturation concentration for growth under P limiting conditions (K s,p ) and cellular C:N:P ratios. The K s,p values were the lowest measured for any phytoplankton and on par with ambient P concentrations in oligotrophic regions. We also observed that both strains were able draw down P below 3 nM. Both K s,p and drawdown concentration were lower for the open ocean vs. coastal Synechococcus strain, which may be linked to differences in P acquisition genes in these strains. Cellular C:P and N:P ratios were significantly higher in relation to the Redfield ratio for both Synechococcus strains but we saw no difference in these ratios among growth rates or strains. These results demonstrate that Synechococcus can proliferate under very low P conditions and also that genetically different strains have unique physiological responses to P limitation.

17.
Front Microbiol ; 6: 998, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441925

RESUMO

Iron (Fe) and copper (Cu) are essential cofactors for microbial metalloenzymes, but little is known about the metalloenyzme inventory of anaerobic marine microbial communities despite their importance to the nitrogen cycle. We compared dissolved O2, NO[Formula: see text], NO[Formula: see text], Fe and Cu concentrations with nucleic acid sequences encoding Fe and Cu-binding proteins in 21 metagenomes and 9 metatranscriptomes from Eastern Tropical North and South Pacific oxygen minimum zones and 7 metagenomes from the Bermuda Atlantic Time-series Station. Dissolved Fe concentrations increased sharply at upper oxic-anoxic transition zones, with the highest Fe:Cu molar ratio (1.8) occurring at the anoxic core of the Eastern Tropical North Pacific oxygen minimum zone and matching the predicted maximum ratio based on data from diverse ocean sites. The relative abundance of genes encoding Fe-binding proteins was negatively correlated with O2, driven by significant increases in genes encoding Fe-proteins involved in dissimilatory nitrogen metabolisms under anoxia. Transcripts encoding cytochrome c oxidase, the Fe- and Cu-containing terminal reductase in aerobic respiration, were positively correlated with O2 content. A comparison of the taxonomy of genes encoding Fe- and Cu-binding vs. bulk proteins in OMZs revealed that Planctomycetes represented a higher percentage of Fe genes while Thaumarchaeota represented a higher percentage of Cu genes, particularly at oxyclines. These results are broadly consistent with higher relative abundance of genes encoding Fe-proteins in the genome of a marine planctomycete vs. higher relative abundance of genes encoding Cu-proteins in the genome of a marine thaumarchaeote. These findings highlight the importance of metalloenzymes for microbial processes in oxygen minimum zones and suggest preferential Cu use in oxic habitats with Cu > Fe vs. preferential Fe use in anoxic niches with Fe > Cu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA