Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Mol Cell ; 82(10): 1894-1908.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390275

RESUMO

miR-10b is silenced in normal neuroglial cells of the brain but commonly activated in glioma, where it assumes an essential tumor-promoting role. We demonstrate that the entire miR-10b-hosting HOXD locus is activated in glioma via the cis-acting mechanism involving 3D chromatin reorganization and CTCF-cohesin-mediated looping. This mechanism requires two interacting lncRNAs, HOXD-AS2 and LINC01116, one associated with HOXD3/HOXD4/miR-10b promoter and another with the remote enhancer. Knockdown of either lncRNA in glioma cells alters CTCF and cohesin binding, abolishes chromatin looping, inhibits the expression of all genes within HOXD locus, and leads to glioma cell death. Conversely, in cortical astrocytes, enhancer activation is sufficient for HOXD/miR-10b locus reorganization, gene derepression, and neoplastic cell transformation. LINC01116 RNA is essential for this process. Our results demonstrate the interplay of two lncRNAs in the chromatin folding and concordant regulation of miR-10b and multiple HOXD genes normally silenced in astrocytes and triggering the neoplastic glial transformation.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
J Neurooncol ; 162(1): 109-118, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36809604

RESUMO

PURPOSE: Meningioma is the most common primary central nervous system tumor often causing serious complications, and presently no medical treatment is available. The goal of this study was to discover miRNAs dysregulated in meningioma, and explore miRNA-associated pathways amenable for therapeutic interventions. METHODS: Small RNA sequencing was performed on meningioma tumor samples to study grade-dependent changes in microRNA expression. Gene expression was analyzed by chromatin marks, qRT-PCR and western blot. miRNA modulation, anti-IGF-2 neutralizing antibodies, and inhibitors against IGF1R were evaluated in a tumor-derived primary cultures of meningioma cells. RESULTS: Meningioma tumor samples showed high, grade-dependent expression of miR-483-5p, associated with high mRNA and protein expression of its host gene IGF-2. Inhibition of miR-483-5p reduced the growth of cultured meningioma cells, whereas a miR-483 mimic increased cell proliferation. Similarly, inhibition of this pathway with anti-IGF-2 neutralizing antibodies reduced meningioma cell proliferation. Small molecule tyrosine kinase inhibitor blockade of the IGF-2 receptor (IGF1R) resulted in rapid loss of viability of cultured meningioma tumor-derived cells, suggesting that autocrine IGF-2 feedback is obligatory for meningioma tumor cell survival and growth. The observed IGF1R-inhibitory IC50 for GSK1838705A and ceritinib in cell-based assays along with the available pharmacokinetics data predicted that effective drug concentration could be achieved in vivo as a new medical treatment of meningioma. CONCLUSION: Meningioma cell growth is critically dependent on autocrine miR-483/IGF-2 stimulation and the IGF-2 pathway provides a feasible meningioma treatment target.


Assuntos
Neoplasias Meníngeas , Meningioma , MicroRNAs , Humanos , Sobrevivência Celular , Meningioma/genética , Receptor IGF Tipo 1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Neoplasias Meníngeas/genética , Regulação Neoplásica da Expressão Gênica
3.
Mol Cancer ; 21(1): 17, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033060

RESUMO

BACKGROUND: miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA's poorly investigated and largely unconventional properties hamper the clinical translation. METHODS: We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. RESULTS: We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. CONCLUSIONS: We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.


Assuntos
Núcleo Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Oncogenes , Splicing de RNA , RNA Nuclear Pequeno/genética , Processamento Alternativo , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana/genética , Modelos Biológicos , Interferência de RNA , RNA Nuclear Pequeno/química , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos/genética , Spliceossomos/metabolismo , Proteína cdc42 de Ligação ao GTP/genética
4.
Neurobiol Dis ; 134: 104617, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669733

RESUMO

As the most common cause of progressive cognitive decline in humans, Alzheimer's disease (AD) has been intensively studied, but the mechanisms underlying its profound synaptic dysfunction remain unclear. Here we confirm that exposing wild-type mice to an enriched environment (EE) facilitates signaling in the hippocampus that promotes long-term potentiation (LTP). Exposing the hippocampus of mice kept in standard housing to soluble Aß oligomers impairs LTP, but EE can fully prevent this. Mechanistically, the key molecular features of the EE benefit are an upregulation of miRNA-132 and an inhibition of histone deacetylase (HDAC) signaling. Specifically, soluble Aß oligomers decreased miR-132 expression and increased HDAC3 levels in cultured primary neurons. Further, we provide evidence that HDAC3 is a direct target of miR-132. Overexpressing miR-132 or injecting an HDAC3 inhibitor into mice in standard housing mimics the benefits of EE in enhancing hippocampal LTP and preventing hippocampal impairment by Aß oligomers in vivo. We conclude that EE enhances hippocampal synaptic plasticity by upregulating miRNA-132 and reducing HDAC3 signaling in a way that counteracts the synaptotoxicity of human Aß oligomers. Our findings provide a rationale for prolonged exposure to cognitive novelty and/or epigenetic modulation to lessen the progressive effects of Aß accumulation during human brain aging.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/toxicidade , Histona Desacetilases/metabolismo , Abrigo para Animais , Potenciação de Longa Duração/fisiologia , MicroRNAs/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Transdução de Sinais/fisiologia
5.
Acta Neuropathol ; 136(4): 537-555, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29982852

RESUMO

MicroRNAs (miRNA) regulate fundamental biological processes, including neuronal plasticity, stress response, and survival. Here, we describe a neuroprotective function of miR-132, the miRNA most significantly downregulated in neurons in Alzheimer's disease. We demonstrate that miR-132 protects primary mouse and human wild-type neurons and more vulnerable Tau-mutant neurons against amyloid ß-peptide (Aß) and glutamate excitotoxicity. It lowers the levels of total, phosphorylated, acetylated, and cleaved forms of Tau implicated in tauopathies, promotes neurite elongation and branching, and reduces neuronal death. Similarly, miR-132 attenuates PHF-Tau pathology and neurodegeneration, and enhances long-term potentiation in the P301S Tau transgenic mice. The neuroprotective effects are mediated by direct regulation of the Tau modifiers acetyltransferase EP300, kinase GSK3ß, RNA-binding protein Rbfox1, and proteases Calpain 2 and Caspases 3/7. These data suggest miR-132 as a master regulator of neuronal health and indicate that miR-132 supplementation could be of therapeutic benefit for the treatment of Tau-associated neurodegenerative disorders.


Assuntos
MicroRNAs/genética , Transdução de Sinais/genética , Tauopatias/genética , Peptídeos beta-Amiloides/genética , Animais , Morte Celular , Ácido Glutâmico/toxicidade , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/fisiologia , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Neuritos/patologia , Neurônios/patologia , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , RNA Longo não Codificante/genética , Proteínas tau/genética
6.
Mol Ther ; 25(2): 368-378, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28153089

RESUMO

Glioblastoma (GBM) brain tumor remains among the most lethal and incurable human diseases. Oncogenic microRNA-10b (miR-10b) is strongly and universally upregulated in GBM, and its inhibition by antisense oligonucleotides (ASOs) reduces the growth of heterogeneous glioma cells; therefore, miR-10b represents a unique therapeutic target for GBM. Here we explored the effects of miR-10b gene editing on GBM. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system, we investigated effects of miR-10b gene editing on the growth of cultured human glioma cells, tumor-initiating stem-like cells, and mouse GBM xenografts, as well as the oncogene-induced transformation of normal astrocytes. We show that GBM is strictly "addicted" to miR-10b and that miR-10b gene ablation is lethal for glioma cell cultures and established intracranial tumors. miR-10b loss-of-function mutations lead to the death of glioma, but not other cancer cell lines. We have not detected escaped proliferative clones of GBM cells edited in the miR-10b locus. Finally, neoplastic transformation of normal astrocytes was abolished by the miR-10b-editing vectors. This study demonstrates the feasibility of gene editing for brain tumors in vivo and suggests virus-mediated miR-10b gene ablation as a promising therapeutic approach that permanently eliminates the key regulator essential for tumor growth and survival.


Assuntos
Neoplasias Encefálicas/genética , Edição de Genes , Glioblastoma/genética , MicroRNAs/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Sequência de Bases , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Camundongos , Mutação , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética
7.
Org Biomol Chem ; 15(6): 1363-1380, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28074950

RESUMO

There is tremendous potential for oligonucleotide (ON) therapeutics, but low cellular penetration due to their polyanionic nature is a major obstacle. We addressed this problem by developing a new approach for ON charge neutralization in which multiple branched charge-neutralizing sleeves (BCNSs) are attached to the internucleoside phosphates of ON by phosphotriester bonds. The BCNSs are terminated with positively charged amino groups, and are optimized to form ion pairs with the neighboring phosphate groups. The new modified ONs can be prepared by standard automated phosphoramidite chemistry in good yield and purity. They possess good solubility and hybridization properties, are not involved in non-standard intramolecular aggregation, have low cytotoxicity, adequate chemical stability, improved serum stability, and above all, display significantly enhanced cellular uptake. Thus, the new ON derivatives exhibit properties that make them promising candidates for the development of novel therapeutics or research tools for modulation of the expression of target genes.


Assuntos
Oligonucleotídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Oligonucleotídeos/química , Solubilidade , Relação Estrutura-Atividade
8.
Ann Neurol ; 77(1): 75-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381879

RESUMO

OBJECTIVE: To investigate miR-155 in the SOD1 mouse model and human sporadic and familial amyotrophic lateral sclerosis (ALS). METHODS: NanoString microRNA, microglia and immune gene profiles, protein mass spectrometry, and RNA-seq analyses were measured in spinal cord microglia, splenic monocytes, and spinal cord tissue from SOD1 mice and in spinal cord tissue of familial and sporadic ALS. miR-155 was targeted by genetic ablation or by peripheral or centrally administered anti-miR-155 inhibitor in SOD1 mice. RESULTS: In SOD1 mice, we found loss of the molecular signature that characterizes homeostatic microglia and increased expression of miR-155. There was loss of the microglial molecules P2ry12, Tmem119, Olfml3, transcription factors Egr1, Atf3, Jun, Fos, and Mafb, and the upstream regulators Csf1r, Tgfb1, and Tgfbr1, which are essential for microglial survival. Microglia biological functions were suppressed including phagocytosis. Genetic ablation of miR-155 increased survival in SOD1 mice by 51 days in females and 27 days in males and restored the abnormal microglia and monocyte molecular signatures. Disease severity in SOD1 males was associated with early upregulation of inflammatory genes, including Apoe in microglia. Treatment of adult microglia with apolipoprotein E suppressed the M0-homeostatic unique microglia signature and induced an M1-like phenotype. miR-155 expression was increased in the spinal cord of both familial and sporadic ALS. Dysregulated proteins that we identified in human ALS spinal cord were restored in SOD1(G93A) /miR-155(-/-) mice. Intraventricular anti-miR-155 treatment derepressed microglial miR-155 targeted genes, and peripheral anti-miR-155 treatment prolonged survival. INTERPRETATION: We found overexpression of miR-155 in the SOD1 mouse and in both sporadic and familial human ALS. Targeting miR-155 in SOD1 mice restores dysfunctional microglia and ameliorates disease. These findings identify miR-155 as a therapeutic target for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Idoso , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/química , MicroRNAs/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligorribonucleotídeos Antissenso/uso terapêutico , Fagocitose/efeitos dos fármacos , Fagocitose/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Mol Ther ; 23(7): 1234-1247, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25903473

RESUMO

Using in silico analysis of The Cancer Genome Atlas (TCGA), we identified microRNAs associated with glioblastoma (GBM) survival, and predicted their functions in glioma growth and progression. Inhibition of two "risky" miRNAs, miR-148a and miR-31, in orthotopic xenograft GBM mouse models suppressed tumor growth and thereby prolonged animal survival. Intracranial tumors treated with uncomplexed miR-148a and miR-31 antagomirs exhibited reduced proliferation, stem cell depletion, and normalized tumor vasculature. Growth-promoting functions of these two miRNAs were, in part, mediated by the common target, the factor inhibiting hypoxia-inducible factor 1 (FIH1), and the downstream pathways involving hypoxia-inducible factor HIF1α and Notch signaling. Therefore, miR-31 and miR-148a regulate glioma growth by maintaining tumor stem cells and their niche, and providing the tumor a way to activate angiogenesis even in a normoxic environment. This is the first study that demonstrates intratumoral uptake and growth-inhibiting effects of uncomplexed antagomirs in orthotopic glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/biossíntese , Oligonucleotídeos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Camundongos , MicroRNAs/antagonistas & inibidores , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Hum Mol Genet ; 22(15): 3077-92, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23585551

RESUMO

Alzheimer's disease (AD) is a multifactorial and fatal neurodegenerative disorder for which the mechanisms leading to profound neuronal loss are incompletely recognized. MicroRNAs (miRNAs) are recently discovered small regulatory RNA molecules that repress gene expression and are increasingly acknowledged as prime regulators involved in human brain pathologies. Here we identified two homologous miRNAs, miR-132 and miR-212, downregulated in temporal cortical areas and CA1 hippocampal neurons of human AD brains. Sequence-specific inhibition of miR-132 and miR-212 induces apoptosis in cultured primary neurons, whereas their overexpression is neuroprotective against oxidative stress. Using primary neurons and PC12 cells, we demonstrate that miR-132/212 controls cell survival by direct regulation of PTEN, FOXO3a and P300, which are all key elements of AKT signaling pathway. Silencing of these three target genes by RNAi abrogates apoptosis caused by the miR-132/212 inhibition. We further demonstrate that mRNA and protein levels of PTEN, FOXO3a, P300 and most of the direct pro-apoptotic transcriptional targets of FOXO3a are significantly elevated in human AD brains. These results indicate that the miR-132/miR-212/PTEN/FOXO3a signaling pathway contributes to AD neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Apoptose/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , MicroRNAs/metabolismo , Modelos Biológicos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Fatores de Transcrição de p300-CBP/metabolismo
11.
J Neurosci ; 33(37): 14645-59, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24027266

RESUMO

MicroRNA (miRNA) functions in the pathogenesis of major neurodegenerative diseases such as Alzheimer's disease (AD) are only beginning to emerge. We have observed significantly elevated levels of a specific miRNA, miR-26b, in the defined pathological areas of human postmortem brains, starting from early stages of AD (Braak III). Ectopic overexpression of miR-26b in rat primary postmitotic neurons led to the DNA replication and aberrant cell cycle entry (CCE) and, in parallel, increased tau-phosphorylation, which culminated in the apoptotic cell death of neurons. Similar tau hyperphosphorylation and CCE are typical features of neurons in pre-AD brains. Sequence-specific inhibition of miR-26b in culture is neuroprotective against oxidative stress. Retinoblastoma protein (Rb1), a major tumor suppressor, appears as the key direct miR-26b target, which mediates the observed neuronal phenotypes. The downstream signaling involves upregulation of Rb1/E2F cell cycle and pro-apoptotic transcriptional targets, including cyclin E1, and corresponding downregulation of cell cycle inhibitor p27/Kip1. It further leads to nuclear export and activation of Cdk5, a major kinase implicated in tau phosphorylation, regulation of cell cycle, and death in postmitotic neurons. Therefore, upregulation of miR-26b in neurons causes pleiotropic phenotypes that are also observed in AD. Elevated levels of miR-26b may thus contribute to the AD neuronal pathology.


Assuntos
Doença de Alzheimer , Apoptose/fisiologia , Ciclo Celular/fisiologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Embrião de Mamíferos , Feminino , Feto , Humanos , Masculino , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos
12.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895399

RESUMO

Tumor cell heterogeneity in neuroblastoma, a pediatric cancer arising from neural crest-derived progenitor cells, poses a significant clinical challenge. In particular, unlike adrenergic (ADRN) neuroblastoma cells, mesenchymal (MES) cells are resistant to chemotherapy and retinoid therapy and thereby significantly contribute to relapses and treatment failures. Previous research suggested that overexpression or activation of miR-124, a neurogenic microRNA with tumor suppressor activity, can induce the differentiation of retinoic acid-resistant neuroblastoma cells. Leveraging our established screen for miRNA modulatory small molecules, we validated PP121, a dual inhibitor of tyrosine and phosphoinositide kinases, as a robust inducer of miR-124. A combination of PP121 and miR-132-inducing bufalin synergistically arrests proliferation, induces differentiation, and prolongs the survival of differentiated MES SK-N-AS cells for 8 weeks. RNA- seq and deconvolution analyses revealed a collapse of the ADRN core regulatory circuitry (CRC) and the emergence of novel CRCs associated with chromaffin cells and Schwann cell precursors. Using a similar protocol, we differentiated and maintained other MES neuroblastoma, as well as glioblastoma cells, over 16 weeks. In conclusion, our novel protocol suggests a promising treatment for therapy-resistant cancers of the nervous system. Moreover, these long-lived, differentiated cells provide valuable models for studying mechanisms underlying differentiation, maturation, and senescence.

13.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425921

RESUMO

Background: The origin and genesis of highly malignant and heterogenous glioblastoma brain tumors remain unknown. We previously identified an enhancer-associated long non-coding RNA, LINC01116 (named HOXDeRNA here), that is absent in the normal brain but is commonly expressed in malignant glioma. HOXDeRNA has a unique capacity to transform human astrocytes into glioma-like cells. This work aimed to investigate molecular events underlying the genome-wide function of this lncRNA in glial cell fate and transformation. Results: Using a combination of RNA-Seq, ChIRP-Seq, and ChIP-Seq, we now demonstrate that HOXDeRNA binds in trans to the promoters of genes encoding 44 glioma-specific transcription factors distributed throughout the genome and derepresses them by removing the Polycomb repressive complex 2 (PRC2). Among the activated transcription factors are the core neurodevelopmental regulators SOX2, OLIG2, POU3F2, and SALL2. This process requires an RNA quadruplex structure of HOXDeRNA that interacts with EZH2. Moreover, HOXDeRNA-induced astrocyte transformation is accompanied by the activation of multiple oncogenes such as EGFR, PDGFR, BRAF, and miR-21, and glioma-specific super-enhancers enriched for binding sites of glioma master transcription factors SOX2 and OLIG2. Conclusions: Our results demonstrate that HOXDeRNA overrides PRC2 repression of glioma core regulatory circuitry with RNA quadruplex structure. These findings help reconstruct the sequence of events underlying the process of astrocyte transformation and suggest a driving role for HOXDeRNA and a unifying RNA-dependent mechanism of gliomagenesis.

14.
Cells ; 12(22)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37998395

RESUMO

While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.


Assuntos
Genoma , RNA não Traduzido , Humanos , RNA não Traduzido/genética , Encéfalo
15.
Mol Ther Nucleic Acids ; 31: 265-275, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36700043

RESUMO

MicroRNA-10b (miR-10b) is an essential glioma driver and one of the top candidates for targeted therapies for glioblastoma and other cancers. This unique miRNA controls glioma cell cycle and viability via an array of established conventional and unconventional mechanisms. Previously reported CRISPR-Cas9-mediated miR-10b gene editing of glioma cells in vitro and established orthotopic glioblastoma in mouse models demonstrated the efficacy of this approach and its promise for therapy development. However, therapeutic gene editing in patients' brain tumors may be hampered, among other factors, by the imperfect delivery and distribution of targeting vectors. Here, we demonstrate that miR-10b gene editing in glioma cells triggers a potent bystander effect that leads to the selective cell death of the unedited glioma cells without affecting the normal neuroglial cells. The effect is mediated by the secreted miR-10b targets phosphoglycerate kinase 1 (PGK1) and insulin-like growth factor binding protein 2 (IGFBP2) that block cell-cycle progression and induce glioma cell death. These findings further support the feasibility of therapeutic miR-10b editing without the need to target every cell of the tumor.

16.
Nat Commun ; 14(1): 7575, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989753

RESUMO

MicroRNAs (miRNAs) regulate fundamental biological processes by silencing mRNA targets and are dysregulated in many diseases. Therefore, miRNA replacement or inhibition can be harnessed as potential therapeutics. However, existing strategies for miRNA modulation using oligonucleotides and gene therapies are challenging, especially for neurological diseases, and none have yet gained clinical approval. We explore a different approach by screening a biodiverse library of small molecule compounds for their ability to modulate hundreds of miRNAs in human induced pluripotent stem cell-derived neurons. We demonstrate the utility of the screen by identifying cardiac glycosides as potent inducers of miR-132, a key neuroprotective miRNA downregulated in Alzheimer's disease and other tauopathies. Coordinately, cardiac glycosides downregulate known miR-132 targets, including Tau, and protect rodent and human neurons against various toxic insults. More generally, our dataset of 1370 drug-like compounds and their effects on the miRNome provides a valuable resource for further miRNA-based drug discovery.


Assuntos
Glicosídeos Cardíacos , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Sequenciamento de Nucleotídeos em Larga Escala
17.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946953

RESUMO

Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.


Assuntos
Doença de Alzheimer/tratamento farmacológico , RNA não Traduzido/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/genética , Demência/tratamento farmacológico , Demência/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , RNA Circular/efeitos dos fármacos , RNA Circular/genética , RNA Longo não Codificante/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA não Traduzido/genética
18.
Mol Oncol ; 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33525064

RESUMO

Mounting evidence suggests that cancer stemness and immunosuppression are related, but the underlying mechanisms behind these are not clear. We previously reported that the stress granule-associated protein G3BP2 is involved in the regulation of tumor-initiating (stem) cells. In this study, we show that this protein also upregulates the immune checkpoint molecule PD-L1 under conditions of stress in breast and glioblastoma cancer cells, revealing a previously unknown connection between stemness programs, stress responses, and immune checkpoint control. We also identified a significant correlation between G3BP2 and PD-L1 co-expression in tumor tissues from cancer patients. To assess the targetability of G3BP2, we employed a small molecule (C108) that binds G3BP2 and interferes with the stress response. Tumors treated with C108 had increased CD8 T-cell proliferation and infiltration. Moreover, treatment of breast tumor-bearing mice with C108 resulted in a significant survival benefit and long-term cures. Cancer cells treated with C108 or cancer cells with genetically repressed G3BP2 had decreased PD-L1 expression due to enhanced mRNA degradation. Our study provides a compelling mechanism linking stress granule formation and immune checkpoint program of cancer, suggesting this link may provide new opportunities for improving anticancer immunotherapy.

19.
J Neuropathol Exp Neurol ; 80(12): 1117-1124, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34850056

RESUMO

Meningioma is the most common primary central nervous system tumor. Although mostly nonmalignant, meningioma can cause serious complications by mass effect and vasogenic edema. While surgery and radiation improve outcomes, not all cases can be treated due to eloquent location. Presently no medical treatment is available to slow meningioma growth owing to incomplete understanding of the underlying pathology, which in turn is due to the lack of high-fidelity tissue culture and animal models. We propose a simple and rapid method for the establishment of meningioma tumor-derived primary cultures. These cells can be maintained in culture for a limited time in serum-free media as spheres and form adherent cultures in the presence of 4% fetal calf serum. Many of the tissue samples show expression of the lineage marker PDG2S, which is typically retained in matched cultured cells, suggesting the presence of cells of arachnoid origin. Furthermore, nonarachnoid cells including vascular endothelial cells are also present in the cultures in addition to arachnoid cells, potentially providing a more accurate tumor cell microenvironment, and thus making the model more relevant for meningioma research and high-throughput drug screening.


Assuntos
Técnicas de Cultura de Células , Neoplasias Meníngeas , Meningioma , Células Tumorais Cultivadas , Humanos
20.
Brain ; 132(Pt 7): 1795-809, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19052140

RESUMO

Parkinson's disease is caused by a progressive loss of the midbrain dopamine (DA) neurons in the substantia nigra pars compacta. Although the main cause of Parkinson's disease remains unknown, there is increasing evidence that it is a complex disorder caused by a combination of genetic and environmental factors, which affect key signalling pathways in substantia nigra DA neurons. Insights into pathogenesis of Parkinson's disease stem from in vitro and in vivo models and from postmortem analyses. Recent technological developments have added a new dimension to this research by determining gene expression profiles using high throughput microarray assays. However, many of the studies reported to date were based on whole midbrain dissections, which included cells other than DA neurons. Here, we have used laser microdissection to isolate single DA neurons from the substantia nigra pars compacta of controls and subjects with idiopathic Parkinson's disease matched for age and postmortem interval followed by microarrays to analyse gene expression profiling. Our data confirm a dysregulation of several functional groups of genes involved in the Parkinson's disease pathogenesis. In particular, we found prominent down-regulation of members of the PARK gene family and dysregulation of multiple genes associated with programmed cell death and survival. In addition, genes for neurotransmitter and ion channel receptors were also deregulated, supporting the view that alterations in electrical activity might influence DA neuron function. Our data provide a 'molecular fingerprint identity' of late-stage Parkinson's disease DA neurons that will advance our understanding of the molecular pathology of this disease.


Assuntos
Dopamina/metabolismo , Perfilação da Expressão Gênica/métodos , Neurônios/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Sobrevivência Celular/genética , Citoesqueleto/patologia , Dopamina/genética , Feminino , Regulação da Expressão Gênica , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Microdissecção/métodos , Mitocôndrias/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Substância Negra/patologia , Sinapses/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA