Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Phys Rev Lett ; 132(5): 056102, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364173

RESUMO

The phonon dispersion of ice VII and that of its proton-ordered analog ice VIII are investigated through a combination of inelastic x-ray scattering (IXS) measurements and first-principles calculations of the oxygen sublattice dynamic structure factor. Particular attention is devoted to hydrogen-disorder in ice VII, addressed theoretically through a statistical ensemble of fictitious ordered supercell configurations. Similar phonon densities of states are found in both phases but are significantly less structured in the case of ice VII. Our data further show that, despite a full proton disorder, the acoustic phonon branches in this phase clearly inherit the periodicity of its body-centered cubic oxygen lattice. The calculations predict, however, the presence of gap openings in the one-atom phonon dispersion. These predictions are supported by revisiting the analysis of previous single-crystal IXS measurements along the longitudinal [111] branch of ice VII.

2.
J Synchrotron Radiat ; 28(Pt 2): 392-403, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650550

RESUMO

Microbeam radiation therapy (MRT) is a developing radiotherapy, based on the use of beams only a few tens of micrometres wide, generated by synchrotron X-ray sources. The spatial fractionation of the homogeneous beam into an array of microbeams is possible using a multislit collimator (MSC), i.e. a machined metal block with regular apertures. Dosimetry in MRT is challenging and previous works still show differences between calculated and experimental dose profiles of 10-30%, which are not acceptable for a clinical implementation of treatment. The interaction of the X-rays with the MSC may contribute to the observed discrepancies; the present study therefore investigates the dose contribution due to radiation interaction with the MSC inner walls and radiation leakage of the MSC. Dose distributions inside a water-equivalent phantom were evaluated for different field sizes and three typical spectra used for MRT studies at the European Synchrotron Biomedical beamline ID17. Film dosimetry was utilized to determine the contribution of radiation interaction with the MSC inner walls; Monte Carlo simulations were implemented to calculate the radiation leakage contribution. Both factors turned out to be relevant for the dose deposition, especially for small fields. Photons interacting with the MSC walls may bring up to 16% more dose in the valley regions, between the microbeams. Depending on the chosen spectrum, the radiation leakage close to the phantom surface can contribute up to 50% of the valley dose for a 5 mm × 5 mm field. The current study underlines that a detailed characterization of the MSC must be performed systematically and accurate MRT dosimetry protocols must include the contribution of radiation leakage and radiation interaction with the MSC in order to avoid significant errors in the dose evaluation at the micrometric scale.


Assuntos
Radiometria , Síncrotrons , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Raios X
3.
J Synchrotron Radiat ; 25(Pt 2): 580-591, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488940

RESUMO

An end-station for resonant inelastic X-ray scattering and (resonant) X-ray emission spectroscopy at beamline ID20 of ESRF - The European Synchrotron is presented. The spectrometer hosts five crystal analysers in Rowland geometry for large solid angle collection and is mounted on a rotatable arm for scattering in both the horizontal and vertical planes. The spectrometer is optimized for high-energy-resolution applications, including partial fluorescence yield or high-energy-resolution fluorescence detected X-ray absorption spectroscopy and the study of elementary electronic excitations in solids. In addition, it can be used for non-resonant inelastic X-ray scattering measurements of valence electron excitations.

4.
J Synchrotron Radiat ; 24(Pt 2): 521-530, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28244449

RESUMO

An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.

5.
Phys Rev Lett ; 119(7): 079903, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949658

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.116.185501.

6.
Phys Rev Lett ; 117(3): 037201, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472131

RESUMO

Using resonant magnetic x-ray scattering we address the unresolved nature of the magnetic ground state and the low-energy effective Hamiltonian of Sm_{2}Ir_{2}O_{7}, a prototypical pyrochlore iridate with a finite temperature metal-insulator transition. Through a combination of elastic and inelastic measurements, we show that the magnetic ground state is an all-in-all-out (AIAO) antiferromagnet. The magnon dispersion indicates significant electronic correlations and can be well described by a minimal Hamiltonian that includes Heisenberg exchange [J=27.3(6) meV] and Dzyaloshinskii-Moriya interactions [D=4.9(3) meV], which provides a consistent description of the magnetic order and excitations. In establishing that Sm_{2}Ir_{2}O_{7} has the requisite inversion symmetry preserving AIAO magnetic ground state, our results support the notion that pyrochlore iridates may host correlated Weyl semimetals.

7.
Phys Rev Lett ; 117(10): 107001, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636488

RESUMO

We have studied the magnetic excitations of electron-doped Sr_{2-x}La_{x}IrO_{4} (0≤x≤0.10) using resonant inelastic x-ray scattering at the Ir L_{3} edge. The long-range magnetic order is rapidly lost with increasing x, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates.

8.
Phys Rev Lett ; 116(18): 185501, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27203332

RESUMO

Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69 K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.

9.
J Synchrotron Radiat ; 22(2): 400-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25723942

RESUMO

A compilation of procedures for planning and performing X-ray Raman scattering (XRS) experiments and analyzing data obtained from them is presented. In particular, it is demonstrated how to predict the overall shape of the spectra, estimate detection limits for dilute samples, and how to normalize the recorded spectra to absolute units. In addition, methods for processing data from multiple-crystal XRS spectrometers with imaging capability are presented, including a super-resolution method that can be used for direct tomography using XRS spectra as the contrast. An open-source software package with these procedures implemented is also made available.

10.
J Synchrotron Radiat ; 22(6): 1555-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524322

RESUMO

A closed-circle miniature flow cell for high X-ray photon flux experiments on radiation-sensitive liquid samples is presented. The compact cell is made from highly inert material and the flow is induced by a rotating magnetic stir bar, which acts as a centrifugal pump inside the cell. The cell is ideal for radiation-sensitive yet precious or hazardous liquid samples, such as concentrated acids or bases. As a demonstration of the cell's capabilities, X-ray Raman scattering spectroscopy data on the oxygen K-edge of liquid water under ambient conditions are presented.

11.
Nat Mater ; 12(11): 1028-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975057

RESUMO

The need for both high electrical conductivity and low thermal conductivity creates a design conflict for thermoelectric systems, leading to the consideration of materials with complicated crystal structures. Rattling of ions in cages results in low thermal conductivity, but understanding the mechanism through studies of the phonon dispersion using momentum-resolved spectroscopy is made difficult by the complexity of the unit cells. We have performed inelastic X-ray and neutron scattering experiments that are in remarkable agreement with our first-principles density-functional calculations of the phonon dispersion for thermoelectric Na(0.8)CoO2, which has a large-period superstructure. We have directly observed an Einstein-like rattling mode at low energy, involving large anharmonic displacements of the sodium ions inside multi-vacancy clusters. These rattling modes suppress the thermal conductivity by a factor of six compared with vacancy-free NaCoO2. Our results will guide the design of the next generation of materials for applications in solid-state refrigerators and power recovery.

12.
Phys Rev Lett ; 112(17): 176402, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836260

RESUMO

In CaIrO3, electronic correlation, spin-orbit coupling, and tetragonal crystal field splitting are predicted to be of comparable strength. However, the nature of its ground state is still an object of debate, with contradictory experimental and theoretical results. We probe the ground state of CaIrO3 and assess the effective tetragonal crystal field splitting and spin-orbit coupling at play in this system by means of resonant inelastic x-ray scattering. We conclude that insulating CaIrO3 is not a j(eff) = 1/2 iridate and discuss the consequences of our finding to the interpretation of previous experiments. In particular, we clarify how the Mott insulating state in iridates can be readily extended beyond the j(eff) = 1/2 ground state.

13.
Phys Rev Lett ; 112(2): 025502, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484025

RESUMO

We measured the density of vibrational states (DOS) and the specific heat of various glassy and crystalline polymorphs of SiO2. The typical (ambient) glass shows a well-known excess of specific heat relative to the typical crystal (α-quartz). This, however, holds when comparing a lower-density glass to a higher-density crystal. For glassy and crystalline polymorphs with matched densities, the DOS of the glass appears as the smoothed counterpart of the DOS of the corresponding crystal; it reveals the same number of the excess states relative to the Debye model, the same number of all states in the low-energy region, and it provides the same specific heat. This shows that glasses have higher specific heat than crystals not due to disorder, but because the typical glass has lower density than the typical crystal.

14.
Phys Rev Lett ; 108(4): 045502, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400861

RESUMO

We have measured phonon dispersion relations of the high-pressure phase cerium-oC4 (α' phase with the α-uranium crystal structure) at 6.5 GPa by using inelastic x-ray scattering. Pronounced phonon anomalies are observed, which are remarkably similar to those of α-U. First-principles electronic structure calculations reproduce the anomalies and allow us to identify strong electron-phonon coupling as their origin. At the low-pressure end of its stability range, Ce-oC4 is on the verge of a lattice-dynamical instability and possibly a charge density wave. The superconducting transition temperatures of the fcc, oC4, and mC4 phases of Ce have been calculated, and the superconductivity observed experimentally by Wittig and Probst is attributed to the oC4 phase.

15.
Phys Rev Lett ; 107(8): 086402, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21929183

RESUMO

We have measured plasmon energies in Na under high pressure up to 43 GPa using inelastic x-ray scattering (IXS). The momentum-resolved results show clear deviations, growing with increasing pressure, from the predictions for a nearly free-electron metal. Plasmon energy calculations based on first-principles electronic band structures and a quasiclassical plasmon model allow us to identify a pressure-induced increase in the electron-ion interaction and associated changes in the electronic band structure as the origin of these deviations, rather than effects of exchange and correlation. Additional IXS results obtained for K and Rb are addressed briefly.

16.
Phys Rev Lett ; 106(20): 205501, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668242

RESUMO

Achieving comprehensive information on thin film lattice dynamics so far has eluded well established spectroscopic techniques. We demonstrate here the novel application of grazing incidence inelastic x-ray scattering combined with ab initio calculations to determine the complete elastic stiffness tensor, the acoustic and low-energy optic phonon dispersion relations of thin wurtzite indium nitride films. Indium nitride is an especially relevant example, due to the technological interest for optoelectronic and solar cell applications in combination with other group III nitrides.

17.
Phys Rev Lett ; 107(13): 136401, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026877

RESUMO

We report an experimental determination of the dispersion of the soft phonon mode along [100] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium and the interplay between the charge-density wave and superconductivity.

18.
Nature ; 404(6776): 371-3, 2000 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-10746719

RESUMO

The temporal structure and high brilliance of the X-ray beams produced by third-generation synchrotrons open up new possibilities in time-dependent diffraction and spectroscopy, where timescales down to the sub-nanosecond regime can now be accessed. These beam properties are such that one can envisage the development of the X-ray equivalent of optical components, such as photon delay lines and resonators, that have proved indispensable in a wide range of experiments--for example, pump-probe and multiple-interaction experiments--and (through shaping the temporal structure and repetition rate of the beams) time-dependent measurements in crystallography, physics, biology and chemistry. Optical resonators, such as those used in lasers, are available at wavelengths from the visible to soft X-rays. Equivalent components for hard X-rays have been discussed for more than thirty years, but have yet to be realized. Here we report the storage of hard X-ray photons (energy 15.817 keV) in a crystal resonator formed by two plates of crystalline silicon. The photons are stored for as many as 14 back-and-forth cycles within the resonator, each cycle separated by one nanosecond.

19.
Acta Crystallogr B ; 66(Pt 5): 493-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20841916

RESUMO

Mapping of reciprocal space for Ia-type diamond single crystals with synchrotron radiation has uncovered a variety of diffuse scattering features, some of them have not been observed before. The main component of diffuse scattering in the form of diffuse rods corresponds to a set of platelets which join together blocks of diamond structure. The platelets are ordered structural entities with lattice periodicity 8(1/2)a(0) x (1/2)(1/2)a(0) x 0.55a(0), where a(0) is a unit-cell dimension of diamond. Intensity distribution along the rods has been measured and used for recognition of symmetry elements of the platelet structure. These findings, together with previously reported transmission electron microscopy (TEM) observations, provide strong constraints for atomistic modelling of the platelet structure.

20.
Science ; 291(5503): 468-71, 2001 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-11161197

RESUMO

The dispersion of longitudinal acoustic phonons was measured by inelastic x-ray scattering in the hexagonal closed-packed (hcp) structure of iron from 19 to 110 gigapascals. Phonon dispersion curves were recorded on polycrystalline iron compressed in a diamond anvil cell, revealing an increase of the longitudinal wave velocity (VP) from 7000 to 8800 meters per second. We show that hcp iron follows a Birch law for VP, which is used to extrapolate velocities to inner core conditions. Extrapolated longitudinal acoustic wave velocities compared with seismic data suggest an inner core that is 4 to 5% lighter than hcp iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA