RESUMO
BACKGROUND: The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. STUDY DESIGN AND METHODS: Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. RESULTS: CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. CONCLUSION: The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone.
Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Tipagem e Reações Cruzadas Sanguíneas/métodos , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/metabolismo , Hemólise , Plasma/metabolismo , Feminino , Humanos , Masculino , Reação Transfusional/metabolismo , Reação Transfusional/prevenção & controleRESUMO
BACKGROUND: Therapeutic hypothermia (HT) is the only intervention that improves outcomes in neonatal hypoxic-ischemic encephalopathy (HIE). However, the multifactorial mechanisms by which HT impacts HIE are incompletely understood. The complement system plays a major role in the pathogenesis of ischemia-reperfusion injuries such as HIE. We have previously demonstrated that HT modulates complement activity in vitro. METHODS: Term equivalent rat pups were subjected to unilateral carotid ligation followed by hypoxia (8% O2) for 45 min to simulate HIE. A subset of animals was subjected to HT (31-32°C for 6 h). Plasma and brain levels of C3a and C5a were measured. Receptors for C3a (C3aR) and C5a (C5aR) along with C1q, C3, and C9 were characterized in neurons, astrocytes, and microglia. RESULTS: We found that HT increased systemic expression of C3a and decreased expression of C5a after HIE. In the brain, C3aR and C5aR are predominantly expressed on microglia after HIE. HT increased local expression of C3aR and decreased expression on C5aR after HIE. Furthermore, HT decreased local expression of C1q, C3-products, and C9 in the brain. CONCLUSION: HT is associated with significant alteration of complement effectors and their cognate receptors. Complement modulation may improve outcomes in neonatal HIE.
Assuntos
Encefalopatias/sangue , Complemento C3a/análise , Complemento C5a/análise , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/sangue , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/patologia , Encefalopatias/terapia , Hipóxia , Hipóxia-Isquemia Encefálica/terapia , Microglia/metabolismo , Neurônios/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão , Temperatura , Fatores de TempoRESUMO
BACKGROUND: A patient with B+ sickle cell disease received 3 units of red blood cells (RBCs) from two O+ donors and developed fever and hypotension after the first unit, consistent with an acute transfusion reaction (ATR). Anti-B titers in plasma from each O+ donor were markedly elevated and nondiscriminatory. In order to evaluate the potential for the transfused units to produce complement-mediated hemolysis of B+ RBCs, hemolytic complement testing was performed. STUDY DESIGN AND METHODS: Plasma from each donor was diluted in veronal buffer and incubated with B+ RBCs, and free hemoglobin was measured by spectrophotometer in the complement hemolysis using human erythrocytes (CHUHE) assay. Peptide inhibitor of complement C1 (PIC1) was used to confirm antibody-initiated complement pathway activation. RESULTS: A 96-fold difference (p = 0.014) in hemolysis was measured between plasma samples from the two O+ donors using the CHUHE assay. The extremely high degree of hemolysis produced by the one plasma was inhibited by PIC1 in a dose-dependent manner. CONCLUSION: These results indicate that hemolytic complement testing with the CHUHE assay can be used to assess the risk of antibody-initiated, complement-mediated hemolysis from a transfusion beyond what can be achieved with antibody titers alone.
Assuntos
Sistema ABO de Grupos Sanguíneos/imunologia , Ativação do Complemento/imunologia , Hemólise/imunologia , Reação Transfusional/imunologia , Adolescente , Anemia Falciforme/terapia , Anticorpos , Incompatibilidade de Grupos Sanguíneos , Feminino , Humanos , Pessoa de Meia-Idade , Medição de RiscoRESUMO
BACKGROUND: Acute hemolytic transfusion reactions have a broad clinical presentation from mild and transitory signs and symptoms to shock, disseminated intravascular coagulation, renal failure, and death. We have recently developed a rat model of acute intravascular hemolysis showing that the classical complement pathway mediates antibody-dependent hemolysis. The objective of this study was to evaluate the role of the classical pathway inhibitor peptide inhibitor of complement C1 (PIC1) in this animal model. STUDY DESIGN AND METHODS: Male Wistar rats received a 15% transfusion of human red blood cells (RBCs) and blood was isolated from the animals up to 120 minutes. Animals received PIC1 either 2 minutes before or 0.5 minutes after transfusion. Sham-, vehicle-, and cobra venom factor (CVF)-treated animals were used as control groups with a subset of rats also receiving an equivalent dose of intravenous immunoglobulin (IVIG) before transfusion. Blood was analyzed for transfused RBC survival by flow cytometry and free hemoglobin (Hb) in isolated plasma by spectrophotometry. RESULTS: Vehicle-treated rats showed decreased human RBC survival and increased free Hb as expected. Rats receiving PIC1 before transfusion showed increased human RBC survival and decreased Hb similar to CVF-treated rats. Notably, rats receiving PIC1 after initiation of transfusion showed similar decreases in hemolysis as animals receiving PIC1 before transfusion. Compared to IVIG and saline controls, PIC1-treated animals demonstrated decreased hemolysis and protection from acute kidney injury. CONCLUSIONS: These results demonstrate that PIC1 has efficacy in an animal model of acute intravascular hemolysis in both prevention and rescue scenarios.
Assuntos
Complemento C1/antagonistas & inibidores , Hemólise/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Incompatibilidade de Grupos Sanguíneos/tratamento farmacológico , Contagem de Eritrócitos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemoglobinas/metabolismo , Humanos , Masculino , Peptídeos/uso terapêutico , Ratos , Ratos Wistar , Reação Transfusional/tratamento farmacológicoRESUMO
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic disease that requires long-term medical management and monitoring. The eosinophil count determined during esophageal biopsy remains the gold standard for diagnosis and monitoring of EoE. Although markers of eosinophil degranulation correlate with symptoms, eosinophil counts do not correlate. Development of a noninvasive, cost-effective biomarker of eosinophil activation for the evaluation of EoE is an unmet medical need. OBJECTIVE: To conduct a proof-of-concept study to evaluate the potential for measuring urinary 3-bromotyrosine (3-BT) levels in creatinine normalized urine for quantifying eosinophil degranulation in EoE disease. METHODS: A mass spectrometry-based method of measuring normalized 3-BT levels, the Eosinophil Quantitated Urine Kinetic (EoQUIK), was developed, and proof-of-concept evaluation was performed for patients with EoE (n = 27), atopic controls (n = 24), and nonatopic controls (n = 24). RESULTS: EoQUIK revealed that median normalized 3-BT levels were increased 93-fold in patients with EoE compared with nonatopic controls (P = .01) and increased 13-fold in patients with EoE compared with atopic controls (P = .01). Cutoff thresholds were selected for EoQUIK that yielded a specificity of 100% and a negative predictive value of 100% for nonatopic controls and a specificity of 79% and a negative predictive value of 90% for atopic controls. In a logistic regression model, a urine 3-BT level greater than 20 pg per 400 mg of creatinine increased the odds of a patient having EoE by 4.8 (95% confidence interval, 1.14-20.5; P = .03) when compared with atopic controls after controlling for race and sex. CONCLUSION: These data provide proof of concept that EoQUIK can potentially be a useful noninvasive clinical tool in the evaluation of possible EoE.
Assuntos
Esofagite Eosinofílica/urina , Tirosina/análogos & derivados , Adolescente , Adulto , Bioensaio , Criança , Pré-Escolar , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/imunologia , Eosinófilos/imunologia , Feminino , Humanos , Contagem de Leucócitos , Masculino , Tirosina/urina , Adulto JovemRESUMO
BACKGROUND: Therapeutic hypothermia is a treatment modality that is increasingly used to improve clinical neurological outcomes for ischemia-reperfusion injury-mediated diseases. Antibody-initiated classical complement pathway activation has been shown to contribute to ischemia-reperfusion injury in multiple disease processes. However, how therapeutic hypothermia affects complement activation is unknown. Our goal was to measure the independent effect of temperature on complement activation, and more specifically, examine the relationship between clinical hypothermia temperatures (31-33°C), and complement activation. METHODS: Antibody-sensitized erythrocytes were used to assay complement activation at temperatures ranging from 0-41°C. Individual complement pathway components were assayed by ELISA, Western blot, and quantitative dot blot. Peptide Inhibitor of complement C1 (PIC1) was used to specifically inhibit activation of C1. RESULTS: Antibody-initiated complement activation resulting in eukaryotic cell lysis was increased by 2-fold at 31°C compared with 37°C. Antibody-initiated complement activation in human serum increased as temperature decreased from 37°C until dramatically decreasing at 13°C. Quantitation of individual complement components showed significantly increased activation of C4, C3, and C5 at clinical hypothermia temperatures. In contrast, C1s activation by heat-aggregated IgG decreased at therapeutic hypothermia temperatures consistent with decreased enzymatic activity at lower temperatures. However, C1q binding to antibody-coated erythrocytes increased at lower temperatures, suggesting that increased classical complement pathway activation is mediated by increased C1 binding at therapeutic hypothermia temperatures. PIC1 inhibited hypothermia-enhanced complement-mediated cell lysis at 31°C by up to 60% (P = 0.001) in a dose dependent manner. CONCLUSIONS: In summary, therapeutic hypothermia temperatures increased antibody-initiated complement activation and eukaryotic cell destruction suggesting that the benefits of therapeutic hypothermia may be mediated via other mechanisms. Antibody-initiated complement activation has been shown to contribute to ischemia-reperfusion injury in several animal models, suggesting that for diseases with this mechanism hypothermia-enhanced complement activation may partially attenuate the benefits of therapeutic hypothermia.
Assuntos
Ativação do Complemento , Hipotermia/fisiopatologia , Temperatura , Ensaio de Imunoadsorção Enzimática , Humanos , Hipotermia/metabolismo , Hipotermia/patologia , Ligação ProteicaRESUMO
BACKGROUND: Prevention of acute hemolytic transfusion reactions is a worldwide concern. The objective of this study was to develop a simple rat model of complement-mediated acute intravascular hemolysis. STUDY DESIGN AND METHODS: Human AB red blood cells (RBCs) were incubated with complement-sufficient or complement-deficient Wistar rat serum (WRS) in the presence and absence of human RBC antibody in vitro to elucidate the mechanism of hemolysis. To study the role of complement in acute intravascular hemolysis in vivo, Wistar rats were treated either with or without cobra venom factor (CVF) to deplete complement activity. Human AB RBCs were then injected into both groups of rats, followed by serial blood draws up to 2 hours. Venous blood clearance and lysis of transfused RBCs at each time point were measured by flow cytometry and spectrophotometry. RBC sequestration was determined in the liver, spleen, and kidney by immunohistochemistry. RESULTS: In vitro incubation of human RBCs with WRS demonstrated that RBC lysis was mediated via the classical complement pathway and that hemolysis was antibody dependent. Transfusion of human RBCs into rats showed significantly less hemolysis in the CVF group versus untreated group. RBC sequestration in the spleen and liver 2 hours posttransfusion were not quantitatively different between the two groups. CONCLUSIONS: Given the much higher degree of similarity for rat and human complement compared to mice, this simple rat model is ideal for testing novel inhibitors of classical pathway activation for the prevention and treatment of acute intravascular hemolysis.
Assuntos
Proteínas do Sistema Complemento , Transfusão de Eritrócitos/efeitos adversos , Eritrócitos/metabolismo , Hemólise , Fígado/metabolismo , Baço/metabolismo , Doença Aguda , Animais , Inativadores do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Modelos Animais de Doenças , Venenos Elapídicos/farmacologia , Eritrócitos/patologia , Humanos , Fígado/patologia , Camundongos , Ratos , Ratos Wistar , Especificidade da Espécie , Baço/patologiaRESUMO
Coronaviruses demonstrate great potential for interspecies transmission, including zoonotic outbreaks. Although bovine coronavirus (BCoV) strains are frequently circulating in cattle farms worldwide, causing both enteric and respiratory disease, little is known about their genomic evolution. We sequenced and analysed the full-length spike (S) protein gene of 33 BCoV strains from dairy and feedlot farms collected during outbreaks that occurred from 2002 to 2010 in Sweden and Denmark. Amino acid identities were >97â% for the BCoV strains analysed in this work. These strains formed a clade together with Italian BCoV strains and were highly similar to human enteric coronavirus HECV-4408/US/94. A high similarity was observed between BCoV, canine respiratory coronavirus (CRCoV) and human coronavirus OC43 (HCoV-OC43). Molecular clock analysis of the S gene sequences estimated BCoV and CRCoV diverged from a common ancestor in 1951, while the time of divergence from a common ancestor of BCoV and HCoV-OC43 was estimated to be 1899. BCoV strains showed the lowest similarity to equine coronavirus, placing the date of divergence at the end of the eighteenth century. Two strongly positive selection sites were detected along the receptor-binding subunit of the S protein gene: spanning amino acid residues 109-131 and 495-527. By contrast, the fusion subunit was observed to be under negative selection. The selection pattern along the S glycoprotein implies adaptive evolution of BCoVs, suggesting a successful mechanism for BCoV to continuously circulate among cattle and other ruminants without disappearance.
Assuntos
Coronavirus Bovino/classificação , Coronavirus Bovino/genética , Evolução Molecular , Glicoproteínas de Membrana/genética , Seleção Genética , Proteínas do Envelope Viral/genética , Animais , Bovinos , Doenças dos Bovinos/virologia , Análise por Conglomerados , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus Bovino/isolamento & purificação , Dinamarca/epidemiologia , Surtos de Doenças , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Glicoproteína da Espícula de Coronavírus , Suécia/epidemiologiaRESUMO
BACKGROUND: Diabetic patients are at increased risk for bacterial infections; these studies provide new insight into the role of the host defense complement system in controlling bacterial pathogens in hyperglycemic environments. METHODS: The interactions of complement C3 with bacteria in elevated glucose were assayed for complement activation to opsonic forms, phagocytosis and bacterial killing. C3 was analyzed in euglycemic and hyperglycemic conditions by mass spectrometry to measure glycation and structural differences. RESULTS: Elevated glucose inhibited S. aureus activation of C3 and deposition of C3b and iC3b on the bacterial surface. S. aureus-generated C5a and serum-mediated phagocytosis by neutrophils were both decreased in elevated glucose conditions. Interestingly, elevated glucose increased the binding of unactivated C3 to S. aureus, which was reversible on return to normal glucose concentrations. In a model of polymicrobial infection, S. aureus in elevated glucose conditions depleted C3 from serum resulting in decreased complement-mediated killing of E. coli. To investigate the effect of differing glucose concentration on C3 structure and glycation, purified C3 incubated with varying glucose concentrations was analyzed by mass spectrometry. Glycation was limited to the same three lysine residues in both euglycemic and hyperglycemic conditions over one hour, thus glycation could not account for observed changes between glucose conditions. However, surface labeling of C3 with sulfo-NHS-biotin showed significant changes in the surface availability of seven lysine residues in response to increasing glucose concentrations. These results suggest that the tertiary structure of C3 changes in response to hyperglycemic conditions leading to an altered interaction of C3 with bacterial pathogens. CONCLUSIONS: These results demonstrate that hyperglycemic conditions inhibit C3-mediated complement effectors important in the immunological control of S. aureus. Mass spectrometric analysis reveals that the glycation state of C3 is the same regardless of glucose concentration over a one-hour time period. However, in conditions of elevated glucose C3 appears to undergo structural changes.
Assuntos
Complemento C3/imunologia , Hiperglicemia/imunologia , Hiperglicemia/microbiologia , Staphylococcus aureus/imunologia , Sequência de Aminoácidos , Complemento C3/química , Complemento C3/isolamento & purificação , Convertases de Complemento C3-C5/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Glucose/farmacologia , Glicosilação/efeitos dos fármacos , Humanos , Espectrometria de Massas , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Opsonizantes/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Ligação Proteica/efeitos dos fármacos , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificaçãoRESUMO
The EPICC peptides are a family of peptides that have been developed from the sequence of the capsid protein of human astrovirus type 1 and previously shown to inhibit the classical and lectin pathways of complement. The EPICC peptides have been further optimized to increase aqueous solubility and identify additional mechanisms of action. Our laboratory has developed the lead EPICC molecule, PA-dPEG24 (also known as RLS-0071), which is composed of a 15 amino acid peptide with a C-terminal monodisperse 24-mer PEGylated moiety. RLS-0071 has been demonstrated to possess other mechanisms of action in addition to complement blockade that include the inhibition of neutrophil-driven myeloperoxidase (MPO) activity, inhibition of neutrophil extracellular trap (NET) formation as well as intrinsic antioxidant activity mediated by vicinal cysteine residues contained within the peptide sequence. RLS-0071 has been tested in various ex vivo and in vivo systems and has shown promise for the treatment of both immune-mediated hematological diseases where alterations in the classical complement pathway plays an important pathogenic role as well as in models of tissue-based diseases such as acute lung injury and hypoxic ischemic encephalopathy driven by both complement and neutrophil-mediated pathways (i.e., MPO activity and NET formation). Next generation EPICC peptides containing a sarcosine residue substitution in various positions within the peptide sequence possess aqueous solubility in the absence of PEGylation and demonstrate enhanced complement and neutrophil inhibitory activity compared to RLS-0071. This review details the development of the EPICC peptides, elucidation of their dual-acting complement and neutrophil inhibitory activities and efficacy in ex vivo systems using human clinical specimens and in vivo efficacy in animal disease models.
Assuntos
Armadilhas Extracelulares , Peptídeos , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Via Clássica do Complemento , Armadilhas Extracelulares/metabolismo , Peptídeos/metabolismo , ÁguaRESUMO
A 14-year-old female patient with sickle cell disease developed a severe delayed hemolytic transfusion reaction (DHTR) leading to multiple transfusions and intensive care management. To better understand the extent to which the classical complement pathway was contributing to her DHTR, we utilized the complement hemolysis using human erythrocytes (CHUHE) assay and the classical complement pathway inhibitor, PIC1. Residual discarded de-identified plasma and erythrocytes from the patient obtained from routine phlebotomy was acquired. These reagents were used in the CHUHE assay in the presence of increasing concentrations of PIC1. Complement-mediated hemolysis of the patient's erythrocytes occurred in her plasma and complement permissive buffer. Increasing concentrations of PIC1 dose-dependently inhibited hemolysis to levels found for the negative control - complement inhibitor buffer. Complement-mediated hemolysis was demonstrated by the CHUHE assay for this patient with sickle cell disease and severe DHTR. PIC1 inhibition of hemolysis suggested that the classical complement pathway was contributing to her DHTR.
RESUMO
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen primarily transmitted through skin-to-skin contact, especially on and around mucosal surfaces where there is contact with contaminated saliva during periods of viral shedding. It is estimated that 90% of adults worldwide have HSV-1 antibodies. Cutaneous HSV-1 infections are characterized by a sensation of tingling or numbness at the initial infection site followed by an eruption of vesicles and then painful ulcers with crusting. These symptoms can take ten days to several weeks to heal, leading to significant morbidity. Histologically, infections cause ballooning degeneration of keratinocytes and formation of multinucleated giant cells, ultimately resulting in a localized immune response. Commonly prescribed treatments against HSV-1 infections are nucleoside analogs, such as acyclovir (ACV). However, the emergence of ACV-resistant HSV (ACVR-HSV) clinical isolates has created an urgent need for the development of compounds to control symptoms of cutaneous infections. RLS-0071, also known as peptide inhibitor of complement C1 (PIC1), is a 15-amino-acid anti-inflammatory peptide that inhibits classical complement pathway activation and modulates neutrophil activation. It has been previously shown to aid in the healing of chronic diabetic wounds by inhibiting the excessive activation of complement component C1 and infiltration of leukocytes. Here, we report that treatment of cutaneous infections of HSV-1 and ACVR-HSV-1 in BALB/cJ mice with RLS-0071 significantly reduced the rate of mortality, decreased zosteriform spread, and enhanced the healing of the infection-associated lesions compared to control-treated animals. Therefore, RLS-0071 may work synergistically with other antiviral drugs to aid in wound healing of HSV-1 cutaneous infection and may potentially aid in rapid wound healing of other pathology not limited to HSV-1.
Assuntos
Inativadores do Complemento/uso terapêutico , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Peptídeos/uso terapêutico , Aciclovir/farmacologia , Animais , Antivirais/farmacologia , Inativadores do Complemento/farmacologia , Farmacorresistência Viral , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/enzimologia , Herpesvirus Humano 1/genética , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Timidina Quinase/genéticaRESUMO
Acute lung injury (ALI) often causes severe trauma that may progress to significant morbidity and mortality. ALI results from a combination of the underlying clinical condition of the patient (e.g., inflammation) with a secondary insult such as viral pneumonia or a blood transfusion. While the secondary insult may be variable, the rapidly progressive disease process leading to pulmonary failure is typically mediated by an overwhelming innate immunological or inflammatory reaction driven by excessive complement and neutrophil-mediated inflammatory responses. We recently developed a 'two-hit' ALI rat model mediated by lipopolysaccharide followed by transfusion of incompatible human erythrocytes resulting in complement activation, neutrophil-mediated ALI and free DNA in the blood indicative of neutrophil extracellular trap formation. The objective of this study was to evaluate the role of peptide inhibitor of complement C1 (RLS-0071), a classical complement pathway inhibitor and neutrophil modulator in this animal model. Adolescent male Wistar rats were infused with lipopolysaccharide followed by transfusion of incompatible erythrocytes in the presence or absence of RLS-0071. Blood was collected at various time points to assess complement C5a levels, free DNA and cytokines in isolated plasma. Four hours following erythrocyte transfusion, lung tissue was recovered and assayed for ALI by histology. Compared to animals not receiving RLS-0071, lungs of animals treated with a single dose of RLS-0071 showed significant reduction in ALI as well as reduced levels of C5a, free DNA and inflammatory cytokines in the blood. These results demonstrate that RLS-0071 can modulate neutrophil-mediated ALI in this novel rat model.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Ativação do Complemento/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Anti-Inflamatórios/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Transfusão de Eritrócitos , Humanos , Lipopolissacarídeos , Pulmão/patologia , Masculino , Ratos , Ratos WistarRESUMO
BACKGROUND: Platelet refractoriness remains a challenging clinical dilemma although significant advancements have been made in identifying human leukocyte antigen (HLA) matched or HLA compatible units. Antiplatelet antibodies are the major risk factor for immune-mediated platelet refractoriness, yet the role of antibody-initiated complement-mediated platelet destruction remains poorly understood. STUDY DESIGN AND METHODS: Human complement-mediated opsonization and killing of platelets was assayed ex vivo using antibody-sensitized human platelets incubated with complement-sufficient human sera. A new animal model of platelet refractoriness utilizing Wistar rats transfused with human platelets is described. RESULTS: Human platelets sensitized with anti-platelet antibodies were rapidly opsonized with iC3b upon incubation in human sera. This opsonization could be completely blocked with a classical pathway complement inhibitor, PA-dPEG24. Complement activation decreased platelet viability, which was also reversible with complement inhibitor PA-dPEG24. A new rat model of platelet refractoriness was developed that demonstrated some platelet removal from the blood stream was complement mediated. CONCLUSIONS: Complement activation initiated by anti-platelet antibodies leads to complement opsonization and decreased platelet viability. A new rat model of platelet refractoriness was developed that adds a new tool for elucidating the mechanisms of platelet refractoriness.
Assuntos
Plaquetas/imunologia , Ativação do Complemento/imunologia , Modelos Animais de Doenças , Isoanticorpos/imunologia , Animais , Via Clássica do Complemento , Humanos , Masculino , Ratos , Ratos Wistar , Transplante HeterólogoRESUMO
Acute transfusion reactions can manifest in many forms including acute hemolytic transfusion reaction, allergic reaction and transfusion-related acute lung injury. We previously developed an acute hemolytic transfusion reaction rat model mediated by transfusion of incompatible human erythrocytes against which rats have preexisting antibodies resulting in classical complement pathway mediated intravascular hemolysis. In this study, the acute hemolytic transfusion reaction model was adapted to yield an acute lung injury phenotype. Adolescent male Wistar rats were primed in the presence or absence of lipopolysaccharide followed by transfusion of incompatible erythrocytes. Blood was collected at various time points during the course of the experiment to determine complement C5a levels and free DNA in isolated plasma. At 4 hours, blood and lung tissue were recovered and assayed for complete blood count and histological acute lung injury, respectively. Compared to sham animals or animals receiving increasing amounts of incompatible erythrocytes (equivalent to a 15-45% transfusion) in the absence of lipopolysaccharide, lungs of animals receiving lipopolysaccharide and a 30% erythrocyte transfusion showed dramatic alveolar wall thickening due to neutrophil infiltration. C5a levels were significantly elevated in these animals indicating that complement activation contributes to lung damage. Additionally, these animals demonstrated a significant increase of free DNA in the blood over time suggestive of neutrophil extracellular trap formation previously associated with transfusion-related acute lung injury in humans and mice. This novel 'two-hit' model utilizing incompatible erythrocyte transfusion in the presence of lipopolysaccharide yields a robust acute lung injury phenotype.
Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Transfusão de Eritrócitos , Lipopolissacarídeos/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Incompatibilidade de Grupos Sanguíneos/metabolismo , Complemento C5a/metabolismo , DNA/sangue , Eritrócitos/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Masculino , Infiltração de Neutrófilos , Ratos , Ratos Wistar , Reação Transfusional/patologiaRESUMO
Human astroviruses (HAstVs) belong to a family of nonenveloped, icosahedral RNA viruses that cause noninflammatory gastroenteritis, predominantly in infants. Eight HAstV serotypes have been identified, with a worldwide distribution. While the HAstVs represent a significant public health concern, very little is known about the pathogenesis of and host immune response to these viruses. Here we demonstrate that HAstV type 1 (HAstV-1) virions, specifically the viral coat protein (CP), suppress the complement system, a fundamental component of the innate immune response in vertebrates. HAstV-1 virions and purified CP both suppress hemolytic complement activity. Hemolytic assays utilizing sera depleted of individual complement factors as well as adding back purified factors demonstrated that HAstV CP suppresses classical pathway activation at the first component, C1. HAstV-1 CP bound the A chain of C1q and inhibited serum complement activation, resulting in decreased C4b, iC3b, and terminal C5b-9 formation. Inhibition of complement activation was also demonstrated for HAstV serotypes 2 to 4, suggesting that this phenomenon is a general feature of these human pathogens. Since complement is a major contributor to the initiation and amplification of inflammation, the observed CP-mediated inhibition of complement activity may contribute to the lack of inflammation associated with astrovirus-induced gastroenteritis. Although diverse mechanisms of inhibition of complement activation have been described for many enveloped animal viruses, this is the first report of a nonenveloped icosahedral virus CP inhibiting classical pathway activation at C1.
Assuntos
Proteínas do Capsídeo/imunologia , Ativação do Complemento/imunologia , Complemento C1q/antagonistas & inibidores , Mamastrovirus/imunologia , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Ligação ProteicaRESUMO
BACKGROUND: A product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities including classical complement pathway inhibition, myeloperoxidase inhibition, NET inhibition and antioxidant activity. PA-dPEG24 is composed of a sequence of 15 amino acid, IALILEPICCQERAA, and contains a monodisperse 24-mer PEGylated moiety at its C terminus to increase aqueous solubility. Here we explore a sarcosine substitution scan of the PA peptide to evaluate impacts on solubility in the absence of PEGylation and functional characteristics. METHODS: Sixteen sarcosine substitution variants were synthesized and evaluated for solubility in water. Aqueous soluble variants were then tested in standard complement, myeloperoxidase, NET formation and antioxidant capacity assays. RESULTS: Six sarcosine substitution variants were aqueous soluble without requiring PEGylation. Substitution with sarcosine of the isoleucine at position eight yielded a soluble peptide that surpassed the parent molecule for complement inhibition and myeloperoxidase inhibition. Substitution with sarcosine of the cysteine at position nine improved solubility, but did not otherwise change the functional characteristics compared with the parent compound. However, replacement of both vicinal cysteine residues at positions 9 and 10 with a single sarcosine residue reduced functional activity in most of the assays tested. CONCLUSIONS: Several of the sarcosine PIC1 variant substitutions synthesized yielded improved solubility as well as a number of unanticipated structure-function findings that provide new insights. Several sarcosine substitution variants demonstrate increased potency over the parent peptide suggesting enhanced therapeutic potential for inflammatory disease processes involving complement, myeloperoxidase, NETs or oxidant stress.
Assuntos
Antioxidantes/farmacologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Armadilhas Extracelulares/efeitos dos fármacos , Peptídeos/farmacologia , Peroxidase/antagonistas & inibidores , Sarcosina/farmacologia , Sequência de Aminoácidos , Antioxidantes/química , Inativadores do Complemento/química , Humanos , Oxirredução/efeitos dos fármacos , Peptídeos/química , Sarcosina/química , Solubilidade , Água/químicaRESUMO
C1 is a multimolecular complex that initiates the classical pathway of complement. It is composed of the pattern recognition component C1q and the serine proteases C1r and C1s. Activation of C1 elicits a series of potent effector mechanisms directed at limiting infection by invading pathogens as well as participating in other biological functions such as immune tolerance. While many molecules in addition to antibody have been demonstrated to activate C1, only a handful of C1 inhibitors have been described. Disregulated control of complement activation is associated with numerous autoimmune and inflammatory disease processes, thus tight regulation of C1 activation is highly desirable. We have recently discovered a novel inhibitor of C1, the coat protein of the human astroviruses, a family of enteric pathogens that infect young children. The astrovirus coat protein binds to the A-chain of C1q and inhibits spontaneous as well as antibody-mediated activation of the C1 complex resulting in suppression of classical pathway activation and complement-mediated terminal effector functions. This is the first description of a non-enveloped icosahedral virus inhibiting complement activation and the first description of a viral inhibitor of C1. The known inhibitors of C1 are reviewed and then discussed in the context of this novel viral C1 inhibitor. Additionally, the properties of this compound are elucidated highlighting its potential as an anti-complement therapeutic for the many diseases associated with inappropriate complement activation.
Assuntos
Proteínas do Capsídeo/imunologia , Ativação do Complemento/imunologia , Proteína Inibidora do Complemento C1/imunologia , Complemento C1/antagonistas & inibidores , Mamastrovirus/imunologia , Complemento C1/imunologia , Complemento C1q/imunologia , Complemento C1q/metabolismo , Complemento C1r/imunologia , Complemento C1r/metabolismo , Complemento C1s/imunologia , Complemento C1s/metabolismo , Humanos , Modelos MolecularesRESUMO
Reactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process. To determine if this property of PIC1 was antioxidant in nature, we tested PIC1 in a number of well-established antioxidant assays. PIC1 showed dose-dependent antioxidant activity in a total antioxidant (TAC) assay, hydroxyl radical antioxidant capacity (HORAC) assay, oxygen radical antioxidant capacity (ORAC) assay as well as the thiobarbituric acid reactive substances (TBARS) assay to screen for PIC1 antioxidant activity in human plasma. The antioxidant activity of PIC1 in the TAC assay, as well as the HORAC/ORAC assay demonstrated that this peptide acts via the single electron transport (SET) and hydrogen atom transfer (HAT) mechanisms, respectively. Consistent with this mechanism of action, PIC1 did not show activity in a metal chelating activity (MCA) assay. PIC1 contains two vicinal cysteine residues and displayed similar antioxidant activity to the well characterized cysteine-containing tripeptide antioxidant molecule glutathione (GSH). Consistent with the role of the cysteine residues in the antioxidant activity of PIC1, oxidation of these residues significantly abrogated antioxidant activity. These results demonstrate that in addition to its described complement inhibiting activity, PIC1 displays in vitro antioxidant activity.
Assuntos
Antioxidantes/metabolismo , Proteína Inibidora do Complemento C1/metabolismo , Transporte de Elétrons/fisiologia , Hidrogênio/metabolismo , Peptídeos/metabolismo , Complemento C1/metabolismo , Glutationa/metabolismo , Hemoglobinas/metabolismo , Humanos , Radical Hidroxila/metabolismo , Oxirredução , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-initiated complement activation and neutrophil extracellular trap (NET) formation by neutrophils. Here, we report in vitro testing of peptide inhibitor of complement C1 (PIC1) in assays of immune complex-mediated complement activation in human sera and assays for NET formation by human neutrophils. The lead PIC1 derivative, PA-dPEG24, was able to dose-dependently inhibit complement activation initiated by multiple types of immune complexes (IC), including C1-anti-C1q IC, limiting the generation of pro-inflammatory complement effectors, including C5a and membrane attack complex (sC5b-9). In several instances, PA-dPEG24 achieved complete inhibition with complement effector levels equivalent to background. PA-dPEG24 was also able to dose-dependently inhibit NET formation by human neutrophils stimulated by PMA, MPO, or immune complex activated human sera. In several instances PA-dPEG24 achieved complete inhibition with NETosis with quantitation equivalent to background levels. These results suggest that PA-dPEG24 inhibition of NETs occurs by blocking the MPO pathway of NET formation. Together these results demonstrate that PA-dPEG24 can inhibit immune complex activation of the complement system and NET formation. This provides proof of concept that peptides can potentially be developed to inhibit these two important contributors to rheumatologic pathology that are currently untargeted by available therapies.