Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sens Actuators B Chem ; 377: 133052, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36438197

RESUMO

RNA isolation and amplification-free user-friendly detection of SARS-CoV-2 is the need of hour especially at resource limited settings. Herein, we devised the peptides of human angiotensin converting enzyme-2 (hACE-2) as bioreceptor at electrode interface for selective targeting of receptor binding domains (RBD) of SARS-CoV-2 spike protein (SP). Disposable carbon-screen printed electrode modified with methylene blue (MB) electroadsorbed graphene oxide (GO) has been constructed as cost-efficient and scalable platform for hACE-2 peptide-based SARS-CoV-2 detection. In silico molecular docking of customized 25 mer peptides with RBD of SARS-CoV-2 SP were validated by AutoDock CrankPep. N-terminal region of ACE-2 showed higher binding affinity of - 20.6 kcal/mol with 15 H-bond, 9 of which were < 3 Å. Electrochemical biosensing of different concentrations of SPs were determined by cyclic voltammetry (CV) and chronoamperometry (CA), enabling a limit of detection (LOD) of 0.58 pg/mL and 0.71 pg/mL, respectively. MB-GO devised hACE-2 peptide platform exert an enhanced current sensitivity of 0.0105 mA/pg mL-1 cm-2 (R2 = 0.9792) (CV) and 0.45 nA/pg mL-1 (R2 = 0.9570) (CA) against SP in the range of 1 pg/mL to 1 µg/mL. For clinical feasibility, nasopharyngeal and oropharyngeal swab specimens in viral transport medium were directly tested with the prepared peptide biosensor and validated with RT-PCR, promising for point-of-need analysis.

2.
Inorg Chem ; 57(23): 14967-14982, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30418745

RESUMO

Three structurally analogous hexanuclear ruthenium(III) complexes were isolated with the general molecular formula of [Ru6III(O)2(µ4-η2-η2-CH2O2)( t-BuCO2)12(L)2] where L = pyridine (1) or 4-dimethylamino pyridine (DMAP; 2) or 4-cyanopyridine (3). Complexes 1 and 3 were solved in the tetragonal I4̅c2 and P41212 space group, respectively, while 2 crystallized in the monoclinic system with P21 /c space group. In all three complexes, two oxo-centered Ru(III) triangles were bridged by a unique and a rare methylenediolate (CH2O2)2-) ligand. This (CH2O2)2- group is reported to be an intermediate, which is not isolated in its metal-free form, to date, as it is unstable. Control experiments performed evidently reveal that the unique reaction condition followed is mandatory to isolate 1-3 and the origin of (CH2O2)2- is unknown at the moment, as no precursor was used to form this intermediate. The presence of (CH2O2)2- identified through X-ray diffraction was further unambiguously confirmed by various 1D (1H and 13C) and 2D-NMR (HSQC, TOCSY, NOESY, and DEPT) spectroscopies. Direct current (dc) magnetic susceptibility measurements performed on 1 and 2 reveal the predominant antiferromagnetic exchange interaction between the Ru(III) centers result in a diamagnetic ground state at 2.0 K. The paramagnetic influence of 1-3 at room temperature evidently felt by the 1H nuclei of the (CH2O2)2- unit predominates compared to other NMR active nuclei in the complexes. The presence of an electron donating or withdrawing substituent on the terminal pyridine results in significant change in the dihedral angle of two oxo-centered triangular (Ru3O-) planes. The change in the structural parameters of 1-3 due to the substituents markedly reflected on the absorption profile and redox behavior, which are systematically investigated. Preliminary galvanostatic charge/discharge cycling experiments performed on a representative complex (3) suggest that 3 can be a promising candidate to employ as an effective multiple electron charge carrier in a nonaqueous redox flow battery.

3.
ACS Appl Bio Mater ; 7(7): 4602-4610, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38869946

RESUMO

Biocompatible, industrially scalable, and opto/electrochemically active biomaterials are promising for biosensor platform design and application. Herein, cyclic oligosaccharide, ß-cyclodextrin (BCD), is conjugated with Butein, a chalcone-type polyphenol, via dehydration reaction of the hydroxyl groups of BCD and the benzoyl ring of Butein. Functional group changes in the conjugated BCD-Butein were comprehensively studied using UV-visible absorbance, Fourier transform-infrared, and X-ray photoelectron spectroscopic techniques. The electrochemical characteristics of BCD-Butein were explored using cyclic voltammetry, showing the reversible redox behavior (2e-/2H+) attributed to the catecholic OH group of Butein. The BCD-Butein-modified electrode exhibits a surface-confined redox process (R2 = 0.99, Ipa and Ipc) at the interface, suitable for external mediatorless sensor studies. An enzymatic biomolecular sensor has been constructed using BCD-Butein-modified glassy carbon and a screen-printed electrode targeting sialic acid as the model clinical biomarker. With the enzyme sialic acid aldolase, BCD-Butein-modified substrate exhibited a selective conversion of sialic acid to N-acetyl-d-mannosamine and pyruvate, with a wide linear detection range (1-100 nM), the lowest detection limit of 0.2 nM, and a quantification limit of 0.69 nM, convenient for clinical threshold diagnosis.


Assuntos
Materiais Biocompatíveis , Técnicas Eletroquímicas , Teste de Materiais , Ácido N-Acetilneuramínico , Oxirredução , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Materiais Biocompatíveis/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/análise , Tamanho da Partícula , Técnicas Biossensoriais , Chalconas/química , Estrutura Molecular
4.
Chem Commun (Camb) ; 60(85): 12405-12408, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39373031

RESUMO

Electrochemical grafting of gallic acid with chitosan (EgGC) voltammetrically deposited on a multitude of substrates exhibiting reversible oxidoreduction suitable for sensor construction is reported. A bioreceptor customized from the fragment antigen binding region of SARS-CoV-2 neutralizing antibodies immobilized on an EgGC matrix supported the selective/specific electrochemical signal transduction with respect to different viral loads (femtogram level) of SARS-CoV-2.


Assuntos
Quitosana , Técnicas Eletroquímicas , Ácido Gálico , Oxirredução , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ácido Gálico/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Quitosana/química , Oligopeptídeos/química , Humanos , COVID-19/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Técnicas Biossensoriais
5.
Nanoscale ; 15(46): 18727-18736, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37953667

RESUMO

Hybridizing biomolecules with metal oxide nanostructures possessing inherent optical emission and electrochemical functionality is advantageous for external mediator-free analytical applications. This work demonstrates the ultrasonochemical synthesis of hafnium oxide (HfO2) nanoparticles and their combination with butein, a chalcone type polyphenol, for the direct electrochemical detection of active herbaceuticals. The underlying hybridization chemistry between HfO2 and butein within the bio-nano interface is comprehensively investigated using ultraviolet diffuse reflectance, X-ray diffraction, Fourier-transform infrared, and X-ray photoelectron spectroscopic techniques. Electron micrographs suggest the formation of elongated nano spherical particles of HfO2 with the incorporation of butein (average particle size of 17.6 ± 2.9 nm). The catecholic OH group of butein existing on the surface of hybridized HfO2 exhibits reversible redox behavior convenient for probing the selected target analyte at physiological pH. The electron diffusion kinetics, electron transfer coefficient and rate constant parameters of the prepared HfO2-butein electrode material have been studied in detail for further application in biomolecular sensing of wogonin. The as-developed sensor platform exhibits a linear detection range of 20-100 µM with a current density of 60 µA cm-2 and a detection limit of 0.63 µM, which is promising for herbaceutical analysis.

6.
Biosensors (Basel) ; 13(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36671841

RESUMO

With the ever-growing global wound care market, demand for robust redox-active healthcare material is obvious for the construction of wearable sensor platforms. Surface reactive functional group-rich material like chitosan holds huge potential for electrochemical biosensor application. Herein, a metal-free redox-active chitosan-butein (CSB) bioconjugate is processed into epidermal bioadhesive electrode material useful for pH sensors promising toward wound site analysis. A two-electrode system devised for conducting carbon-reinforced silver chloride paste and CSB-modified carbon/silver chloride matrix was used as a reference and working electrodes, respectively. Dimensions of working and reference electrodes (4 mm) were designed by 2D cutter plotter-assisted stenciling. The cross-sectional topology of the constructed adhesive CSB-sensor platform exhibits an average surface thickness of 183 ± 2 µm. Cyclic voltammetric analysis revealed the inherent 2e-/2H+ transfer attributed to the catechol OH groups of graft polymerized CSB modified on adhesive gauze. As-fabricated modified electrode substrates exhibit distinguishable potential differences with respect to electrolytes of varied pH (between 5 to 9), promising for wound site analysis.


Assuntos
Técnicas Biossensoriais , Quitosana , Estudos Transversais , Carbono , Eletrodos , Oxirredução , Concentração de Íons de Hidrogênio , Técnicas Eletroquímicas
7.
Carbohydr Polym ; 269: 118333, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294343

RESUMO

Metal-free cost-efficient biocompatible molecules are beneficial for opto-electrochemical bioassays. Herein, chitosan (CS) conjugated butein is prepared via graft polymerization. Structural integrity between radical active sites of CS and its probable conjugation routes with reactive OH group of butein during grafting were comprehensively studied using optical absorbance/emission property, NMR, FT-IR and XPS analysis. Fluorescence emission of CS-conjugated butein (CSB) was studied in dried flaky state as well as in drop casted form. Cyclic voltammetric study of CSB modified glassy carbon electrode exhibits 2e-/2H+ transfer reaction in phosphate buffered saline electrolyte following a surface-confined process with a correlation coefficient of 0.99. Unlike pristine butein, CSB modified electrode display a highly reversible redox behavior under various pH ranging from 4 to 9. For the proof-of-concept CSB-modified flexible screen printed electrodes were processed for electrochemical biosensing of exosomal CD24 specific nucleic acid at an ultralow sample concentration, promising for ovarian cancer diagnosis.


Assuntos
Antígeno CD24/genética , Chalconas/química , Quitosana/análogos & derivados , DNA/análise , Exossomos/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Chalconas/síntese química , Quitosana/síntese química , Sondas de DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA