Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2401136121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985762

RESUMO

Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.


Assuntos
Aptâmeros de Nucleotídeos , Fator IXa , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Fator IXa/metabolismo , Fator IXa/química , Fator IXa/antagonistas & inibidores , Humanos , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia
2.
Blood ; 143(12): 1167-1180, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142429

RESUMO

ABSTRACT: Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.


Assuntos
Síndrome Antifosfolipídica , COVID-19 , Viroses , Humanos , Animais , Camundongos , Anticorpos Antifosfolipídeos , Tromboplastina/metabolismo , Camundongos Endogâmicos MRL lpr , Síndrome Antifosfolipídica/complicações , Fosfolipídeos , Anticoagulantes , COVID-19/complicações , Viroses/complicações
3.
Blood ; 135(23): 2085-2093, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32187355

RESUMO

Thromboembolism complicates disorders caused by immunoglobulin G (IgG)-containing immune complexes (ICs), but the underlying mechanisms are incompletely understood. Prior evidence indicates that induction of tissue factor (TF) on monocytes, a pivotal step in the initiation, localization, and propagation of coagulation by ICs, is mediated through Fcγ receptor IIa (FcγRIIa); however, the involvement of other receptors has not been investigated in detail. The neonatal Fc receptor (FcRn) that mediates IgG and albumin recycling also participates in cellular responses to IgG-containing ICs. Here we asked whether FcRn is also involved in the induction of TF-dependent factor Xa (FXa) activity by IgG-containing ICs by THP-1 monocytic cells and human monocytes. Induction of FXa activity by ICs containing IgG antibodies to platelet factor 4 (PF4) involved in heparin-induced thrombocytopenia (HIT), ß-2-glycoprotein-1 implicated in antiphospholipid syndrome, or red blood cells coated with anti-(α)-Rh(D) antibodies that mediate hemolysis in vivo was inhibited by a humanized monoclonal antibody (mAb) that blocks IgG binding to human FcRn. IgG-containing ICs that bind to FcγR and FcRn induced FXa activity, whereas IgG-containing ICs with an Fc engineered to be unable to engage FcRn did not. Infusion of an α-FcRn mAb prevented fibrin deposition after microvascular injury in a murine model of HIT in which human FcγRIIa was expressed as a transgene. These data implicate FcRn in TF-dependent FXa activity induced by soluble and cell-associated IgG-containing ICs. Antibodies to FcRn, now in clinical trials in warm autoimmune hemolytic anemia to lower IgG antibodies and IgG containing ICs may also reduce the risk of venous thromboembolism.


Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Heparina/toxicidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Trombocitopenia/imunologia , Tromboplastina/metabolismo , Animais , Anticoagulantes/toxicidade , Complexo Antígeno-Anticorpo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Receptores Fc/genética , Receptores Fc/imunologia , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo , Trombocitopenia/patologia
4.
J Biol Chem ; 295(45): 15198-15207, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32859749

RESUMO

Factor X activation by the intrinsic Xase complex, composed of factor IXa bound to factor VIIIa on membranes, is essential for the amplified blood coagulation response. The biological significance of this step is evident from bleeding arising from deficiencies in factors VIIIa or IXa in hemophilia. Here, we assess the mechanism(s) that enforce the distinctive specificity of intrinsic Xase for its biological substrate. Active-site function of IXa was assessed with a tripeptidyl substrate (PF-3688). The reversible S1 site binder, 4-aminobenzamidine (pAB), acted as a classical competitive inhibitor of PF-3688 cleavage by Xase. In contrast, pAB acted as a noncompetitive inhibitor of factor X activation. This disconnect between peptidyl substrate and protein substrate cleavage indicates a major role for interactions between factor X and extended sites on Xase in determining substrate affinity. Accordingly, an uncleavable factor X variant, not predicted to engage the active site of IXa within Xase, acted as a classical competitive inhibitor of factor X activation. Fluorescence studies confirmed the binding of factor X to Xase assembled with IXa with a covalently blocked active site. Our findings suggest that the recognition of factor X by the intrinsic Xase complex occurs through a multistep "dock-and-lock" pathway in which the initial interaction between factor X and intrinsic Xase occurs at exosites distant from the active site, followed by active-site docking and bond cleavage.


Assuntos
Fator IXa/metabolismo , Fator VIIIa/metabolismo , Fator X/metabolismo , Sítios de Ligação , Humanos , Cinética , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 294(7): 2422-2435, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30578302

RESUMO

The proteolytic conversion of factor V to factor Va is central for amplified flux through the blood coagulation cascade. Heterodimeric factor Va is produced by cleavage at three sites in the middle of factor V by thrombin, yielding an N terminus-derived heavy chain and a C terminus-derived light chain. Here, we show that light chain formation resulting from the C-terminal cleavage is the rate-limiting step in the formation of fully cleaved Va. This rate-limiting step also corresponded to and was sufficient for the ability of cleaved factor V to bind Xa and assemble into the prothrombinase complex. Meizothrombin, the proteinase intermediate in thrombin formation, cleaves factor V more slowly than does thrombin, resulting in a pronounced defect in the formation of the light chain. A ∼100-fold reduced rate of meizothrombin-mediated light chain formation by meizothrombin corresponded to equally slow production of active cofactor and an impaired ability to amplify flux through the coagulation cascade initiated in plasma. We show that this defect arises from the occlusion of anion-binding exosite 2 in the catalytic domain by the covalently retained propiece in meizothrombin. Our findings provide structural insights into the prominent role played by exosite 2 in the rate-limiting step of factor V activation. They also bear on how factor V is converted into a cofactor capable of assembling into prothrombinase.


Assuntos
Precursores Enzimáticos/química , Fator Va/química , Proteólise , Trombina/química , Precursores Enzimáticos/metabolismo , Fator Va/metabolismo , Fator Xa/química , Fator Xa/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Trombina/metabolismo
6.
Blood ; 130(14): 1661-1670, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28729433

RESUMO

Safe and effective antithrombotic therapy requires understanding of mechanisms that contribute to pathological thrombosis but have a lesser impact on hemostasis. We found that the extrinsic tissue factor (TF) coagulation initiation complex can selectively activate the antihemophilic cofactor, FVIII, triggering the hemostatic intrinsic coagulation pathway independently of thrombin feedback loops. In a mouse model with a relatively mild thrombogenic lesion, TF-dependent FVIII activation sets the threshold for thrombus formation through contact phase-generated FIXa. In vitro, FXa stably associated with TF-FVIIa activates FVIII, but not FV. Moreover, nascent FXa product of TF-FVIIa can transiently escape the slow kinetics of Kunitz-type inhibition by TF pathway inhibitor and preferentially activates FVIII over FV. Thus, TF synergistically primes FIXa-dependent thrombin generation independently of cofactor activation by thrombin. Accordingly, FVIIa mutants deficient in direct TF-dependent thrombin generation, but preserving FVIIIa generation by nascent FXa, can support intrinsic pathway coagulation. In ex vivo flowing blood, a TF-FVIIa mutant complex with impaired free FXa generation but activating both FVIII and FIX supports efficient FVIII-dependent thrombus formation. Thus, a previously unrecognized TF-initiated pathway directly yielding FVIIIa-FIXa intrinsic tenase complex may be prohemostatic before further coagulation amplification by thrombin-dependent feedback loops enhances the risk of thrombosis.


Assuntos
Coagulação Sanguínea , Fator VIII/metabolismo , Fator VIIa/metabolismo , Fator Xa/metabolismo , Tromboplastina/metabolismo , Fator VIIIa/metabolismo , Humanos , Trombina/metabolismo
7.
J Biol Chem ; 291(21): 11114-23, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27013660

RESUMO

Thrombin is produced from the C-terminal half of prothrombin following its proteolytic activation. The N-terminal half, released as the propiece Fragment 12 (F12), is composed of an N-terminal γ-carboxyglutamate domain (Gla) followed by two kringles (K1 and K2). The propiece plays essential roles in regulating prothrombin activation and proteinase function. The latter results from the ability of F12 to reversibly bind to the (pro)catalytic domain through K2 with high affinity and highly favorable thermodynamic constants when it is a zymogen in comparison to proteinase. Such discrimination is lost for K2 binding after proteolytic removal of the N-terminal Gla-K1 region of F12. The Ca(2+)-stabilized structure of the Gla domain is not required for F12 to bind the zymogen form more favorably. Enhanced binding to zymogen versus proteinase correlates with the ability of the propiece to enforce zymogen-like character in the proteinase. This is evident in variants of meizothrombin, an intermediate of prothrombin activation that contains the propiece covalently attached. This phenomenon is also independent of the Gla domain. Thus, the presence of K1 in covalent linkage with K2 in the propiece governs the ability of K2 to bind the (pro)catalytic domain in favor of zymogen, thereby enforcing zymogen-like character in the proteinase.


Assuntos
Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Protrombina/química , Protrombina/metabolismo , Domínio Catalítico , Ativação Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Humanos , Técnicas In Vitro , Cinética , Kringles , Modelos Moleculares , Ligação Proteica , Termodinâmica
8.
Blood ; 126(8): 923-4, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26294711

RESUMO

In this issue of Blood, back-to-back (dos-à-dos) papers by Chiu et al and Yee et al present complementary findings of structural investigations into the interaction between factor VIII (FVIII) and von Willebrand factor (VWF). The binding of FVIII to VWF contributes in a major way to the regulation of hemostasis.


Assuntos
Fator VIII/química , Fator VIII/metabolismo , Modelos Moleculares , Fator de von Willebrand/química , Fator de von Willebrand/metabolismo , Humanos
9.
Blood ; 124(11): 1705-14, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24869936

RESUMO

The membrane-dependent interaction of factor Xa (FXa) with factor Va (FVa) forms prothrombinase and drives thrombin formation essential for hemostasis. Activated platelets are considered to provide the primary biological surface to support prothrombinase function. However, the question of how other cell types may cooperate within the biological milieu to affect hemostatic plug formation remains unaddressed. We used confocal fluorescence microscopy to image the distribution of site-specific fluorescent derivatives of FVa and FXa after laser injury in the mouse cremaster arteriole. These proteins bound to the injury site extend beyond the platelet mass to the surrounding endothelium. Although bound FVa and FXa may have been present on the platelet core at the nidus of the injury, bound proteins were not evident on platelets adherent even a small distance from the injury site. Manipulations to drastically reduce adherent platelets yielded a surprisingly modest decrease in bound FXa and FVa with little impact on fibrin formation. Thus, platelets adherent to the site of vascular injury do not play the presumed preeminent role in supporting prothrombinase assembly and thrombin formation. Rather, the damaged/activated endothelium and possibly other blood cells play an unexpectedly important role in providing a procoagulant membrane surface in vivo.


Assuntos
Endotélio Vascular/metabolismo , Fator Va/metabolismo , Fator Xa/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Plaquetas/metabolismo , Plaquetas/patologia , Endotélio Vascular/patologia , Camundongos , Camundongos Endogâmicos BALB C , Adesividade Plaquetária
10.
Blood ; 122(16): 2777-83, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23869089

RESUMO

The prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association. Pseutarin C is an intrinsically stable prothrombinase complex preassembled in the venom gland of the Australian Eastern Brown Snake (Pseudonaja textilis). Here we report the crystal structures of the fX-fV complex and of activated fXa from P textilis venom and the derived model of active pseutarin C. Structural analysis supports a single substrate binding channel on fVa, to which prothrombin and the intermediate meizothrombin bind in 2 different orientations, providing insight into the architecture and mechanism of the prothrombinase complex-the molecular engine of blood coagulation.


Assuntos
Fator V/química , Fator Xa/química , Venenos de Serpentes/enzimologia , Tromboplastina/química , Animais , Sítios de Ligação , Coagulação Sanguínea , Cristalografia por Raios X , Venenos Elapídicos/química , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Serpentes
11.
Arterioscler Thromb Vasc Biol ; 34(1): 120-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24177324

RESUMO

OBJECTIVE: Histones are detrimental in late sepsis. Both activated protein C (aPC) and heparin can reverse their effect. Here, we investigated whether histones can modulate aPC generation in a manner similar to another positively charged molecule, platelet factor 4, and how heparinoids (unfractionated heparin or oxygen-desulfated unfractionated heparin with marked decrease anticoagulant activity) may modulate this effect. APPROACH AND RESULTS: We measured in vitro and in vivo effects of histones, platelet factor 4, and heparinoids on aPC formation, activated partial thromboplastin time, and murine survival. In vitro, histones and platelet factor 4 both affect thrombin/thrombomodulin aPC generation following a bell-shaped curve, with a peak of >5-fold enhancement. Heparinoids shift these curves rightward. Murine aPC generation studies after infusions of histones, platelet factor 4, and heparinoids supported the in vitro data. Importantly, although unfractionated heparin and 2-O, 3-O desulfated heparin both reversed the lethality of high-dose histone infusions, only mice treated with 2-O, 3-O desulfated heparin demonstrated corrected activated partial thromboplastin times and had significant levels of aPC. CONCLUSIONS: Our data provide a new contextual model of how histones affect aPC generation, and how heparinoid therapy may be beneficial in sepsis. These studies provide new insights into the complex interactions controlling aPC formation and suggest a novel therapeutic interventional strategy.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Heparinoides/farmacologia , Histonas/sangue , Fator Plaquetário 4/sangue , Proteína C/metabolismo , Sepse/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Ativação Enzimática , Heparina/análogos & derivados , Heparina/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tempo de Tromboplastina Parcial , Fator Plaquetário 4/deficiência , Fator Plaquetário 4/genética , Sepse/sangue , Sepse/enzimologia , Trombina/metabolismo , Trombomodulina/metabolismo
12.
J Biol Chem ; 288(39): 27789-800, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940050

RESUMO

Long-standing dogma proposes a profound contribution of membrane binding by prothrombin in determining the rate at which it is converted to thrombin by prothrombinase. We have examined the action of prothrombinase on full-length prothrombin variants lacking γ-carboxyglutamate modifications (desGla) with impaired membrane binding. We show an unexpectedly modest decrease in the rate of thrombin formation for desGla prothrombin but with a major effect on the pathway for substrate cleavage. Using desGla prothrombin variants in which the individual cleavage sites have been singly rendered uncleavable, we find that loss of membrane binding and other Gla-dependent functions in the substrate leads to a decrease in the rate of cleavage at Arg(320) and a surprising increase in the rate of cleavage at Arg(271). These compensating effects arise from a loss in the membrane component of exosite-dependent tethering of substrate to prothrombinase and a relaxation in the constrained presentation of the individual cleavage sites for active site docking and catalysis. Loss of constraint is evident as a switch in the pathway for prothrombin cleavage and the intermediate produced but without the expected profound decrease in rate. Extension of these findings to the action of prothrombinase assembled on platelets and endothelial cells on fully carboxylated prothrombin reveals new mechanistic insights into function on physiological membranes. Cell-dependent enzyme function is probably governed by a differential ability to support prothrombin binding and the variable accumulation of intermediates from the two possible pathways of prothrombin activation.


Assuntos
Membrana Celular/metabolismo , Protrombina/química , Tromboplastina/química , Coagulação Sanguínea , Plaquetas/metabolismo , Fator V/química , Fator Va/química , Fator Xa/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligação Proteica , Especificidade por Substrato
13.
J Biol Chem ; 288(42): 30151-30160, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24014022

RESUMO

Coagulation factor V (FV) circulates as an inactive procofactor and is activated to FVa by proteolytic removal of a large inhibitory B-domain. Conserved basic and acidic sequences within the B-domain appear to play an important role in keeping FV as an inactive procofactor. Here, we utilized recombinant B-domain fragments to elucidate the mechanism of this FV autoinhibition. We show that a fragment encoding the basic region (BR) of the B-domain binds with high affinity to cofactor-like FV(a) variants that harbor an intact acidic region. Furthermore, the BR inhibits procoagulant function of the variants, thereby restoring the procofactor state. The BR competes with FXa for binding to FV(a), and limited proteolysis of the B-domain, specifically at Arg(1545), ablates BR binding to promote high affinity association between FVa and FXa. These results provide new insight into the mechanism by which the B-domain stabilizes FV as an inactive procofactor and reveal how limited proteolysis of FV progressively destabilizes key regulatory regions of the B-domain to produce an active form of the molecule.


Assuntos
Fator Va/química , Fator Xa/química , Peptídeos/química , Proteólise , Fator Va/antagonistas & inibidores , Fator Va/genética , Fator Va/metabolismo , Fator Xa/genética , Fator Xa/metabolismo , Humanos , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
14.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730234

RESUMO

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Assuntos
Aptâmeros de Nucleotídeos , Domínio Catalítico , Hirudinas , Trombina , Humanos , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Trombina/antagonistas & inibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacologia , Anticoagulantes/farmacologia , Anticoagulantes/química , Fator Xa/metabolismo , Fator Xa/química , Inibidores do Fator Xa/química , Inibidores do Fator Xa/farmacologia , Animais , Sítios de Ligação , Coagulação Sanguínea/efeitos dos fármacos
15.
J Biol Chem ; 287(36): 30414-25, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22815477

RESUMO

Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.


Assuntos
Coagulação Sanguínea/fisiologia , Precursores Enzimáticos/química , Trombina/química , Trombomodulina/química , Precursores Enzimáticos/metabolismo , Humanos , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Trombina/metabolismo , Trombomodulina/metabolismo
16.
Blood ; 118(10): 2882-8, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21772054

RESUMO

Heparin-induced thrombocytopenia (HIT) is caused by antibodies that recognize complexes between platelet factor 4 (PF4) and heparin or glycosaminoglycan side chains. These antibodies can lead to a limb- and life-threatening prothrombotic state. We now show that HIT antibodies are able to inhibit generation of activated protein C (aPC) by thrombin/thrombomodulin (IIa/TM) in the presence of PF4. Tetrameric PF4 potentiates aPC generation by formation of complexes with chondroitin sulfate (CS) on TM. Formation of these complexes occurs at a specific molar ratio of PF4 to glycosaminoglycan. This observation and the finding that the effect of heparin on aPC generation depends on the concentration of PF4 suggest similarity between PF4/CS complexes and those that bind HIT antibodies. HIT antibodies reduced the ability of PF4 to augment aPC formation. Cationic protamine sulfate, which forms similar complexes with heparin, also enhanced aPC generation, but its activity was not blocked by HIT antibodies. Our studies provide evidence that complexes formed between PF4 and TM's CS may play a physiologic role in potentiating aPC generation. Recognition of these complexes by HIT antibodies reverses the PF4-dependent enhancement in aPC generation and may contribute to the prothrombotic nature of HIT.


Assuntos
Anticorpos Monoclonais/farmacologia , Heparina/efeitos adversos , Inibidor da Proteína C/farmacologia , Proteína C/antagonistas & inibidores , Proteína C/metabolismo , Protrombina/metabolismo , Trombocitopenia/induzido quimicamente , Trombocitopenia/metabolismo , Adulto , Animais , Anticoagulantes/efeitos adversos , Células Cultivadas , Glicosaminoglicanos/metabolismo , Humanos , Integrases/metabolismo , Rim/citologia , Rim/imunologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator Plaquetário 4/fisiologia , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Trombina/metabolismo , Trombocitopenia/imunologia , Trombomodulina/metabolismo
17.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36930803

RESUMO

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Tempo de Sangramento , Plaquetas/metabolismo , Deleção de Genes , Homeostase/genética , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Trombose/genética
18.
J Biol Chem ; 286(26): 23345-56, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21531712

RESUMO

Mouse and human prothrombin (ProT) active site specifically labeled with D-Phe-Pro-Arg-CH(2)Cl (FPR-ProT) inhibited tissue factor-initiated thrombin generation in platelet-rich and platelet-poor mouse and human plasmas. FPR-prethrombin 1 (Pre 1), fragment 1 (F1), fragment 1.2 (F1.2), and FPR-thrombin produced no significant inhibition, demonstrating the requirement for all three ProT domains. Kinetics of inhibition of ProT activation by the inactive ProT(S195A) mutant were compatible with competitive inhibition as an alternate nonproductive substrate, although FPR-ProT deviated from this mechanism, implicating a more complex process. FPR-ProT exhibited ∼10-fold more potent anticoagulant activity compared with ProT(S195A) as a result of conformational changes in the ProT catalytic domain that induce a more proteinase-like conformation upon FPR labeling. Unlike ProT and ProT(S195A), the pathway of FPR-ProT cleavage by prothrombinase was redirected from meizothrombin toward formation of the FPR-prethrombin 2 (Pre 2)·F1.2 inhibitory intermediate. Localization of ProT labeled with Alexa Fluor® 660 tethered through FPR-CH(2)Cl ([AF660]FPR-ProT) during laser-induced thrombus formation in vivo in murine arterioles was examined in real time wide-field and confocal fluorescence microscopy. [AF660]FPR-ProT bound rapidly to the vessel wall at the site of injury, preceding platelet accumulation, and subsequently to the thrombus proximal, but not distal, to the vessel wall. [AF660]FPR-ProT inhibited thrombus growth, whereas [AF660]FPR-Pre 1, lacking the F1 membrane-binding domain did not bind or inhibit. Labeled F1.2 localized similarly to [AF660]FPR-ProT, indicating binding to phosphatidylserine-rich membranes, but did not inhibit thrombosis. The studies provide new insight into the mechanism of ProT activation in vivo and in vitro, and the properties of a unique exosite-directed prothrombinase inhibitor.


Assuntos
Domínio Catalítico , Protrombina/metabolismo , Tromboplastina/metabolismo , Trombose/enzimologia , Substituição de Aminoácidos , Animais , Coagulação Sanguínea , Ativação Enzimática/genética , Humanos , Cinética , Camundongos , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Protrombina/química , Protrombina/genética , Tromboplastina/química , Tromboplastina/genética , Trombose/genética
19.
Cell Chem Biol ; 29(2): 215-225.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114109

RESUMO

Coagulation cofactors profoundly regulate hemostasis and are appealing targets for anticoagulants. However, targeting such proteins has been challenging because they lack an active site. To address this, we isolate an RNA aptamer termed T18.3 that binds to both factor V (FV) and FVa with nanomolar affinity and demonstrates clinically relevant anticoagulant activity in both plasma and whole blood. The aptamer also shows synergy with low molecular weight heparin and delivers potent anticoagulation in plasma collected from patients with coronavirus disease 2019 (COVID-19). Moreover, the aptamer's anticoagulant activity can be rapidly and efficiently reversed using protamine sulfate, which potentially allows fine-tuning of aptamer's activity post-administration. We further show that the aptamer achieves its anticoagulant activity by abrogating FV/FVa interactions with phospholipid membranes. Our success in generating an anticoagulant aptamer targeting FV/Va demonstrates the feasibility of using cofactor-binding aptamers as therapeutic protein inhibitors and reveals an unconventional working mechanism of an aptamer by interrupting protein-membrane interactions.


Assuntos
Anticoagulantes/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator V/antagonistas & inibidores , Fator Va/antagonistas & inibidores , Sequência de Aminoácidos , Anticoagulantes/química , Anticoagulantes/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sítios de Ligação , COVID-19/sangue , Membrana Celular/química , Membrana Celular/metabolismo , Fator V/química , Fator V/genética , Fator V/metabolismo , Fator Va/química , Fator Va/genética , Fator Va/metabolismo , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/metabolismo , Humanos , Soros Imunes/química , Soros Imunes/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Protaminas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Técnica de Seleção de Aptâmeros , Especificidade por Substrato , Tratamento Farmacológico da COVID-19
20.
J Biol Chem ; 285(1): 328-38, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19858193

RESUMO

Prothrombinase converts prothrombin to thrombin via cleavage at Arg(320) followed by cleavage at Arg(271). Exosite-dependent binding of prothrombin to prothrombinase facilitates active site docking by Arg(320) and initial cleavage at this site. Precise positioning of the Arg(320) site for cleavage is implied by essentially normal cleavage at Arg(320) in recombinant prothrombin variants bearing additional Arg side chains either one or two residues away. However, mutation of Arg(320) to Gln reveals that prothrombinase can cleave prothrombin following Arg side chains shifted by as many as two residues N-terminal to the 320 position at near normal rates. Further repositioning leads to a loss in cleavage at this region with an abrupt shift toward slow cleavage at Arg(271). In contrast, the binding constant for the active site docking step is strongly dependent on the sequence preceding the scissile bond as well as position. Large effects on binding only yield minor changes in rate until the binding constant passes a threshold value. This behavior is expected for a substrate that can engage the enzyme through mutually exclusive active site docking reactions followed by cleavage to yield different products. Cleavage site specificity as well as the ordered action of prothrombinase on its compound substrate is regulated by the thermodynamics of active site engagement of the individual sites as well as competition between alternate cleavage sites for active site docking.


Assuntos
Protrombina/metabolismo , Tromboplastina/metabolismo , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Domínio Catalítico , Linhagem Celular , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Protrombina/química , Especificidade por Substrato , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA