Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 27(4): 1330-43, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21896500

RESUMO

BACKGROUND: The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. METHODS: Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. RESULTS: PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P<0.05 versus controls). Cultured immortalized PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced apoptosis in cultured PECs, while a forced decrease of p-ERK1/2 through inhibition of MEK 1/2 significantly increased albumin-induced PEC apoptosis. CONCLUSIONS: A normal role of PECs is to take up filtered albumin. However, this is increased in proteinuric glomerular diseases, leading to apoptosis through changes in ERK1/2.


Assuntos
Apoptose , Células Epiteliais/patologia , Glomérulos Renais/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Soroalbumina Bovina/farmacologia , Animais , Western Blotting , Bovinos , Linhagem Celular Tumoral , Células Cultivadas , Células Epiteliais/enzimologia , Feminino , Técnicas Imunoenzimáticas , Glomérulos Renais/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nefrose Lipoide/metabolismo , Nefrose Lipoide/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Frações Subcelulares
2.
Am J Physiol Renal Physiol ; 300(4): F1026-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289056

RESUMO

Podocytes are considered terminally differentiated cells in the mature kidney under normal conditions. In the face of injury, podocytes may proceed along several possible pathways, including dedifferentiation and proliferation, persistent cell cycle arrest, hypertrophy, apoptosis, or necrosis. There is mounting evidence that transdifferentiation into a dysregulated phenotype may also be a potential cell fate. We have previously reported that the transcript of SM22α, an actin-binding protein considered one of the earliest markers of smooth muscle differentiation, is upregulated nearly 70-fold in glomeruli of rats with passive Heymann nephritis (PHN). In contrast, the SM22α transcript is absent in normal adult rat glomeruli. The purpose of this study was to define SM22α's expression during kidney development and its role in glomerular diseases characterized by podocyte injury and proteinuria. During glomerulogenesis and podocyte differentiation, SM22α was expressed in glomeruli. This expression disappeared with glomerular maturation. Along with SM22α induction in PHN, confirmed at both mRNA and protein levels, SM22α was also induced across a broad range of proteinuric diseases, including experimental animal models (puromycin aminonucleoside nephropathy, adriamycin nephropathy, passive nephrotoxic nephritis, and diet-induced obesity) and human diseases (collapsing glomerulopathy, diabetic nephropathy, classic focal segmental glomerulosclerosis, IgA nephropathy, minimal-change disease, membranous nephropathy, and membranoproliferative glomerulonephritis). Crescentic glomerulonephritis was induced in SM22α +/+ and SM22α -/- mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody 12.5 mg/20 g body wt × 2 doses (n = 12-15/group), with mice euthanized at 7 and 14 days. Compared with SM22α -/- mice, SM22α +/+ mice demonstrated worse disease by histopathological parameters. In addition, there was greater apoptosis (cleaved caspase-3 immunostaining), fewer podocytes (Wilms' tumor-1 immunostaining), and less proliferation (Ki-67 immunostaining) in diseased SM22α +/+ mice. Furthermore, there was decreased activation of Erk1/2 in diseased SM22α +/+ mice. We conclude that the de novo expression of SM22α in glomerular epithelial cells affects the course of crescentic glomerulonephritis.


Assuntos
Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo , Animais , Apoptose , Western Blotting , Humanos , Imuno-Histoquímica , Nefropatias/patologia , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética , Podócitos/patologia , Proteinúria/patologia
3.
Am J Physiol Renal Physiol ; 298(5): F1140-51, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20130121

RESUMO

In response to injury, the highly specialized and terminally differentiated glomerular visceral epithelial cell, or podocyte, may undergo several cell fates, including dedifferentiation and proliferation, persistent cell cycle arrest, hypertrophy, apoptosis, or necrosis. Common to these potential outcomes of injury is their ultimate regulation at the level of the cell cycle. There is now a large body of literature confirming the importance of cell cycle regulatory proteins in the cellular response to injury. Although CDK inhibitor p21 levels increase in podocytes following injury, the role of p21 is unclear in focal segmental glomerulosclerosis (FSGS), in part because its function depends heavily on the cytotoxic stimulus and the cellular context. Adriamycin (ADR) is a podocyte toxin used to induce experimental FSGS. The purpose of this study was to define the role of p21 in ADR-induced podocyte injury. BALB/c mice, a strain carrying the recessive ADR susceptibility gene, were backcrossed against c57B6 p21-/- mice to yield a 12th generation BALB/c p21-/- strain. Experimental FSGS was induced by injection of ADR 12 mg/kg × 2 doses (n = 8/group), with mice killed at 1, 2, 8, and 11 wk. Diseased p21-/- mice demonstrated worse albuminuria, more widespread glomerulosclerosis, and higher blood urea nitrogen compared with diseased p21+/+ mice. In diseased p21-/- mice vs. p21+/+ mice, apoptosis [measured by TdT-mediated dUTP nick end labeling (TUNEL) assay] was increased, and podocyte number (measured by WT-1 immunostaining) was decreased. To validate these findings in vitro, we utilized differentiated mouse podocytes, p21-/- and p21+/+, exposed to 0.125 µg/ml ADR. Apoptosis, measured by Hoechst 33342 staining and TUNEL assay, was greater in cultured p21-/- podocytes compared with p21+/+ podocytes. Reconstitution of p21 via retroviral transfection rescued the p21-/- podocytes from apoptosis. We conclude that p21 is prosurvival in the podocyte's response to ADR-induced injury. Ongoing studies are defining the mechanisms of this protective effect as it relates to DNA damage and apoptosis.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Doxorrubicina/farmacologia , Glomerulosclerose Segmentar e Focal/patologia , Podócitos/efeitos dos fármacos , Podócitos/patologia , Albuminúria/etiologia , Albuminúria/fisiopatologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Modelos Animais de Doenças , Doxorrubicina/efeitos adversos , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/fisiopatologia , Técnicas In Vitro , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA