Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ann Hum Genet ; 88(2): 113-125, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37807935

RESUMO

INTRODUCTION: Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics. MATERIALS AND METHODS: DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism. RESULTS: All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA. DISCUSSION: Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.


Assuntos
Aneuploidia , Variações do Número de Cópias de DNA , Gravidez , Feminino , Humanos , Análise Custo-Benefício , Sequenciamento Completo do Genoma/métodos , DNA
2.
Am J Med Genet A ; 194(6): e63544, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258498

RESUMO

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Assuntos
Testes Genéticos , Unidades de Terapia Intensiva Neonatal , Sequenciamento Completo do Genoma , Humanos , Brasil/epidemiologia , Recém-Nascido , Masculino , Feminino , Testes Genéticos/métodos , Projetos Piloto , Lactente , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética
3.
Bioessays ; 39(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28582591

RESUMO

In this manuscript we describe Proteogenomics Viewer, a web-based tool that collects MS peptide identification, indexes to genomic sequence and structure, assigns exon usage, reports the identified protein isoforms with genomic alignments and, most importantly, allows the inspection of MS2 information for proper peptide identification. It also provides all performed indexing to facilitate global analysis of the data. The relevance of such tool is that there has been an increase in the number of proteogenomic efforts to improve the annotation of both genomics and proteomics data, culminating with the release of the two human proteome drafts. It is now clear that mass spectrometry-based peptide identification of uncharacterized sequences, such as those resulting from unpredicted exon joints or non-coding regions, is still prone to a higher than expected false discovery rate. Therefore, proper visualization of the raw data and the corresponding genome alignments are fundamental for further data validation and interpretation. Also see the video abstract here: http://youtu.be/5NzyRvuk4Ac.


Assuntos
Genoma/genética , Espectrometria de Massas/métodos , Peptídeos/genética , Proteogenômica/métodos , Genômica/métodos , Humanos , Proteoma/genética , Proteômica/métodos
4.
Diagnostics (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958189

RESUMO

Homologous recombination deficiency (HRD) has become an important prognostic and predictive biomarker for patients with high-grade serous ovarian cancer who may benefit from poly-ADP ribose polymerase inhibitors (PARPi) and platinum-based therapies. HRD testing provides relevant information to personalize patients' treatment options and has been progressively incorporated into diagnostic laboratories. Here, we assessed the performance of an in-house HRD testing system deployable in a diagnostic clinical setting, comparing results from two commercially available next-generation sequencing (NGS)-based tumor tests (SOPHiA DDMTM HRD Solution and AmoyDx® (HRD Focus Panel)) with the reference assay from Myriad MyChoice® (CDx). A total of 85 ovarian cancer samples were subject to HRD testing. An overall strong correlation was observed across the three assays evaluated, regardless of the different underlying methods employed to assess genomic instability, with the highest pairwise correlation between Myriad and SOPHiA (R = 0.87, p-value = 3.39 × 10-19). The comparison of the assigned HRD status to the reference Myriad's test revealed a positive predictive value (PPV) and negative predictive value (NPV) of 90.9% and 96.3% for SOPHiA's test, while AmoyDx's test achieved 75% PPV and 100% NPV. This is the largest HRD testing evaluation using different methodologies and provides a clear picture of the robustness of NGS-based tests currently offered in the market. Our data shows that the implementation of in-house HRD testing in diagnostic laboratories is technically feasible and can be reliably performed with commercial assays. Also, the turnaround time is compatible with clinical needs, making it an ideal alternative to offer to a broader number of patients while maintaining high-quality standards at more accessible price tiers.

5.
RNA Biol ; 9(11): 1339-43, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064119

RESUMO

Understanding alternative splicing is crucial to elucidate the mechanisms behind several biological phenomena, including diseases. The huge amount of expressed sequences available nowadays represents an opportunity and a challenge to catalog and display alternative splicing events (ASEs). Although several groups have faced this challenge with relative success, we still lack a computational tool that uses a simple and straightforward method to retrieve, name and present ASEs. Here we present SPLOOCE, a portal for the analysis of human splicing variants. SPLOOCE uses a method based on regular expressions for retrieval of ASEs. We propose a simple syntax that is able to capture the complexity of ASEs.


Assuntos
Processamento Alternativo , Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Sítios de Splice de RNA , Humanos , Internet , Análise de Sequência com Séries de Oligonucleotídeos
6.
J Pers Med ; 12(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35455670

RESUMO

Genetic factors associated with COVID-19 disease outcomes are poorly understood. This study aimed to associate genetic variants in the SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, and ABO genes with the risk of severe forms of COVID-19 in Amazonian Native Americans, and to compare the frequencies with continental populations. The study population was composed of 64 Amerindians from the Amazon region of northern Brazil. The difference in frequencies between the populations was analyzed using Fisher's exact test, and the results were significant when p ≤ 0.05. We investigated 64 polymorphisms in 7 genes; we studied 47 genetic variants that were new or had impact predictions of high, moderate, or modifier. We identified 15 polymorphisms with moderate impact prediction in 4 genes (ABO, CXCR6, FYCO1, and SLC6A20). Among the variants analyzed, 18 showed significant differences in allele frequency in the NAM population when compared to others. We reported two new genetic variants with modifier impact in the Amazonian population that could be studied to validate the possible associations with COVID-19 outcomes. The genomic profile of Amazonian Native Americans may be associated with protection from severe forms of COVID-19. This work provides genomic data that may help forthcoming studies to improve COVID-19 outcomes.

7.
Genes (Basel) ; 12(2)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499154

RESUMO

Estimates show that 5-10% of breast cancer cases are hereditary, caused by genetic variants in autosomal dominant genes; of these, 16% are due to germline mutations in the BRCA1 and BRCA2 genes. The comprehension of the mutation profile of these genes in the Brazilian population, particularly in Amazonian Amerindian groups, is scarce. We investigated fifteen polymorphisms in the BRCA1 and BRCA2 genes in Amazonian Amerindians and compared the results with the findings of global populations publicly available in the 1000 Genomes Project database. Our study shows that three variants (rs11571769, rs144848, and rs11571707) of the BRCA2 gene, commonly associated with hereditary breast cancer, had a significantly higher allele frequency in the Amazonian Amerindian individuals in comparison with the African, American, European, and Asian groups analyzed. These data outline the singular genetic profiles of the indigenous population from the Brazilian Amazon region. The knowledge about BRCA1 and BRCA2 variants is critical to establish public policies for hereditary breast cancer screening in Amerindian groups and populations admixed with them, such as the Brazilian population.


Assuntos
Alelos , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Mutação , Proteína BRCA1 , Brasil/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Mutação em Linhagem Germinativa , Humanos , Grupos Populacionais/genética
8.
PLoS One ; 15(4): e0231651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294118

RESUMO

INTRODUCTION: The nudix hydrolase 15 (NUDT15) gene acts in the metabolism of thiopurine, by catabolizing its active metabolite thioguanosine triphosphate into its inactivated form, thioguanosine monophosphate. The frequency of alternative NUDT15 alleles, in particular those that cause a drastic loss of gene function, varies widely among geographically distinct populations. In the general population of northern Brazilian, high toxicity rates (65%) have been recorded in patients treated with the standard protocol for acute lymphoblastic leukemia, which involves thiopurine-based drugs. The present study characterized the molecular profile of the coding region of the NUDT15 gene in two groups, non-admixed Amerindians and admixed individuals from the Amazon region of northern Brazil. METHODS: The entire NUDT15 gene was sequenced in 64 Amerindians from 12 Amazonian groups and 82 admixed individuals from northern Brazil. The DNA was extracted using phenol-chloroform. The exome libraries were prepared using the Nextera Rapid Capture Exome (Illumina) and SureSelect Human All Exon V6 (Agilent) kits. The allelic variants were annotated in the ViVa® (Viewer of Variants) software. RESULTS: Four NUDT15 variants were identified: rs374594155, rs1272632214, rs147390019, andrs116855232. The variants rs1272632214 and rs116855232 were in complete linkage disequilibrium, and were assigned to the NUDT15*2 genotype. These variants had high frequencies in both our study populations in comparison with other populations catalogued in the 1000 Genomes database. We also identified the NUDT15*4 haplotype in our study populations, at frequencies similar to those reported in other populations from around the world. CONCLUSION: Our findings indicate that Amerindian and admixed populations from northern Brazil have high frequencies of the NUDT15 haplotypes that alter the metabolism profile of thiopurines.


Assuntos
Povos Indígenas/genética , Pirofosfatases/genética , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Brasil , Humanos , Mercaptopurina/farmacologia , Mercaptopurina/uso terapêutico , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirofosfatases/metabolismo
9.
Oncotarget ; 8(54): 92966-92977, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190970

RESUMO

Cancer/testis (CT) genes are excellent candidates for cancer immunotherapies because of their restrict expression in normal tissues and the capacity to elicit an immune response when expressed in tumor cells. In this study, we provide a genome-wide screen for CT genes with the identification of 745 putative CT genes. Comparison with a set of known CT genes shows that 201 new CT genes were identified. Integration of gene expression and clinical data led us to identify dozens of CT genes associated with either good or poor prognosis. For the CT genes related to good prognosis, we show that there is a direct relationship between CT gene expression and a signal for CD8+ cells infiltration for some tumor types, especially melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA