Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 13(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834992

RESUMO

Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.


Assuntos
Quirópteros/virologia , Ebolavirus , Doença pelo Vírus Ebola/virologia , Tolerância Imunológica , Animais , Surtos de Doenças , Reservatórios de Doenças/virologia , Ebolavirus/genética , Replicação Viral
2.
PLoS Negl Trop Dis ; 14(10): e0008699, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33095766

RESUMO

Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.


Assuntos
Anticorpos Antivirais/sangue , Imunoensaio/métodos , Microesferas , Proteínas do Nucleocapsídeo/imunologia , Viroses/veterinária , Animais , Quirópteros , Humanos , Primatas , Viroses/diagnóstico , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA