RESUMO
To gain insight in the environmental impacts of crop, soil and nutrient management, an integrated model framework INITIATOR was developed predicting: (i) emissions of ammonia (NH3) and greenhouse gases (GHG) from agriculture, including animal husbandry and crop production and (ii) accumulation, leaching and runoff of carbon, nutrients (nitrogen, N, phosphorus, P, and base cations) and metals in or from soils to groundwater and surface water in the Netherlands. Key processes in soil are included by linear or non-linear process formulations to maintain transparency and to enable data availability for spatially explicit application from field up to national level. Calculated national trends in nutrient losses over 2000-2020 compared well with independent estimates and showed a reduction in N and P input of 26 to 33 %, whereas the surplus declined by 33 % for N and 86 % for P due to increased crop yields and reduced inputs. This was accompanied by a reduction of 30-35 % in atmospheric emissions of ammonia and nitrous oxide as well a decline in N and P runoff of 35 and 10 %, respectively, whereas the emission of methane increased with 4 %. Model results compared well with (i) large scale observations of ammonia concentrations in air and nitrate concentrations in upper groundwater and ditch water, (ii) with nitrous oxide emissions and phosphorus adsorption in experiments at field scale and (iii) with metal adsorption in large scale soil datasets. Various mitigation measures were evaluated in view of policy ambitions for climate, soil and environmental quality for 2030, i.e. a reduction of 50 % for NH3, 11-17 % for GHG, 20 % for N runoff and 40 % for P runoff and an ambition of 50 % GHG emission reduction for 2050. The measures focused on a combination of animal feeding, low emission housing and application technologies, improved crop, soil and nutrient management, all being applied with an effectiveness of 100 % and 50 %, respectively. In addition, we evaluated impacts of 50 % livestock reduction, and combination scenarios of measures and livestock reduction. Full implementation of all measures can reduce NH3 emission, N leaching and N runoff by approximately 40-50 % and GHG emissions by approximately 30 %, but there is less potential to reduce P runoff, being <10 %. The combination of a more likely 50 % implementation/effectiveness of measures with 25 % livestock reduction leads to a comparable reduction. Required reductions from Dutch agriculture seem not possible with improved management only, but also requires livestock reduction, especially when the NH3 ambitions at the short term (2030) and the climate ambitions for the long term (2050) should be attained.
Assuntos
Gases de Efeito Estufa , Metais Pesados , Animais , Amônia/análise , Óxido Nitroso/análise , Esterco , Fertilizantes , Água , Agricultura/métodos , Solo , Gado , Criação de Animais Domésticos , Nutrientes , FósforoRESUMO
Spatially detailed information on agricultural nitrogen (N) budgets is relevant to identify regions where there is a need for a reduction in inputs in view of various forms of N pollution. However, at the scale of the European Union, there is a lack of consistent, reliable, high spatial resolution data necessary for the calculation of regional N losses. To gain insight in the reduction in uncertainty achieved by using higher spatial resolution input data. This was done by comparing spatially disaggregated agricultural N budgets for Denmark for the period 2000-2010, generated by two versions of the European scale model Integrator, a version using high spatial resolution national data for Denmark (Integrator-DK) and a version using available data at the EU scale (Integrator-EU). Results showed that the national N fluxes in the N budgets calculated by the two versions of the model were within 1-5% for N inputs by fertilizer and manure excretion, but inputs by N fixation and N mineralisation differed by 50-100% and N uptake also differed by ca 25%, causing a difference in N leaching and runoff of nearly 50%. Comparison with an independently derived Danish national budget appeared generally to be better with Integrator-EU results in 2000 but with Integrator-DK results in 2010. However, the spatial distribution of manure distribution and N losses from Integrator-DK were closer to observed distributions than those from Integrator-EU. We conclude that close attention to local agronomic practices is needed when using a leaching fraction approach and that for effective support of environmental policymaking, Member States need to collect or submit high spatial resolution agricultural data to Eurostat.
RESUMO
Phosphorus is an essential element to enhance the needed increase in crop production in the forthcoming century. On the other hand environmental losses of phosphorus cause eutrophication of surface waters. Both problems call for reliable models to predict the behaviour of phosphorus in agricultural soils. In this study the performances of five different sorption approaches were evaluated. The ultimate aim was to identify the most suitable concept for large scale predictions of P dynamics in soils, in terms of a high comparability between observations and predictions with a minimum amount of input data. The model results were compared with unique data from long term (10-15years) experimental field studies of grassland including situations with P mining, equilibrium P fertilization and P surpluses and a pot experiment with P mining. The model performance was evaluated while using site specific constants and generic constants for adsorption and desorption. Three rate limited models (DPPS, INITIATOR and ANIMO) showed good performance when site specific constants were used but the performance of the equilibrium model (NEWS-Dynamic) was reasonably comparable. Model performance was better for experiments with a P surplus than for P mining and was also better for sandy soils as compared to clay and peat soils. However, long term desorption rates had to be calibrated for each application rate. The performance of all models declined when generic data were used. We conclude that none of the included models properly describe what happens when the soil changes its P status, considering that parameterization needs to be treatment-specific to obtain reliable predictions. Considering this flaw, models of intermediate complexity, including both equilibrium and rate limited sorption, and a limited data demand, like DPPS and INITIATOR, seem most suited for regional model application.
RESUMO
Nitrous oxide (N(2)O) direct soil emissions from agriculture are often estimated using the default IPCC emission factor (EF) of 1%. However, a large variation in EFs exists due to differences in environment, crops and management. We developed an approach to determine N(2)O EFs that depend on N-input sources and environmental factors. The starting point of the method was a monitoring study in which an EF of 1% was found. The conditions of this experiment were set as the reference from which the effects of 16 sources of N input, three soil types, two land-use types and annual precipitation on the N(2)O EF were estimated. The derived EF inference scheme performed on average better than the default IPCC EF. The use of differentiated EFs, including different regional conditions, allows accounting for the effects of more mitigation measures and offers European countries a possibility to use a Tier 2 approach.
Assuntos
Agricultura , Monitoramento Ambiental , Óxido Nitroso/química , Solo/química , Criação de Animais Domésticos , Animais , Fertilizantes/análise , Gado/crescimento & desenvolvimento , Esterco/análise , Modelos BiológicosRESUMO
PURPOSE: Anaplastic oligodendrogliomas are more responsive to chemotherapy than high-grade astrocytomas. We investigated, in a multicenter randomized controlled trial, whether adjuvant procarbazine, lomustine, and vincristine (PCV) chemotherapy improves overall survival (OS) in newly diagnosed patients with anaplastic oligodendrogliomas or anaplastic oligoastrocytomas. PATIENTS AND METHODS: The primary end point of the study was OS; secondary end points were progression-free survival (PFS) and toxicity. Patients were randomly assigned to either 59.4 Gy of radiotherapy (RT) in 33 fractions only or to the same RT followed by six cycles of standard PCV chemotherapy (RT/PCV). 1p and 19q deletions were assessed with fluorescent in situ hybridization. RESULTS: A total of 368 patients were included. The median follow-up time was 60 months, and 59% of patients have died. In the RT arm, 82% of patients with tumor progression received chemotherapy. In 38% of patients in the RT/PCV arm, adjuvant PCV was discontinued for toxicity. OS time after RT/PCV was 40.3 months compared with 30.6 months after RT only (P = .23). RT/PCV increased PFS time compared with RT only (23 v 13.2 months, respectively; P = .0018). Twenty-five percent of patients were diagnosed with combined 1p/19q loss; 74% of this subgroup was still alive after 60 months. RT/PCV did not improve survival in the subgroup of patients with 1p/19q loss. CONCLUSION: Adjuvant PCV chemotherapy does not prolong OS but does increase PFS in anaplastic oligodendroglioma. Combined loss of 1p/19q identifies a favorable subgroup of oligodendroglial tumors. No genetic subgroup could be identified that benefited with respect to OS from adjuvant PCV.