RESUMO
Atmospheric heat has become a major public concern in a rapidly warming world. Evapotranspiration, however, provides effective land surface cooling during the vegetation period. Adversely, modern cultural landscapes - due to both water and potential evapotranspiration pathways lacking - are increasingly incapable of offering this important benefit. We hypothesised that concerted measures for a revived landscape water retention can fuel plant transpiration, especially during dry periods, and thus contribute to climate change adaptation by stabilising the regional climate. Seeking nature-based ways to an improved landscape water retention, we used the land surface temperature (LST) as a proxy for landscape mesoclimate. For our drought-prone rural study area, we identified potential candidate environmental predictors for which we established statistical relationships to LST. We then, from a set of potential climate change adaptation measures, mapped selected items to potential locations of implementation. Building on that, we evaluated a certain measures' probable cooling effect using (i) the fitted model and (ii) the expected expression of predictors before and after a hypothetical measure implementation. In the modelling, we took into account the spatial and temporal autocorrelation of the LST data and thus achieved realistic parameter estimates. Using the candidate predictor set and the model, we were able to establish a ranking of the effectiveness of climate adaptation measures. However, due to the spatial variability of the predictors, the modelled LST is site-specific. This results in a spatial differentiation of a measure's benefit. Furthermore, seasonal variations occur, such as those caused by plant growth. On average, the afforestation of arable land or urban brownfields, and the rewetting of former wet meadows have the largest cooling capacities of up to 3.5 K. We conclude that heat countermeasures based on fostering both evapotranspiration and landscape water retention, even in rural regions, offer promising adaptation ways to atmospheric warming.
Assuntos
Mudança Climática , TemperaturaRESUMO
BACKGROUND: Urbanization leads to substantial changes in natural habitats with profound effects on wildlife. Understanding behavioural responses to such environmental change is essential for identifying which organisms may adapt, as behaviour is often the first response to altered conditions. Individuals in more urbanized habitats may be expected to be more exploratory and bolder than their conspecifics in less urbanized habitats as they may be better able to cope with novel challenges. METHODS: In a two-year field study we tested ground beetles from differently urbanized forests for their exploratory behaviour (in a novel environment) and their risk-taking (death-feigning). In total, we tested ca. 3,000 individuals of four forest-dwelling ground beetle species from eight within-city forest patches. In the second year, we also transferred ca. 800 tested individuals of two species to the laboratory to test for consistent behavioural differences (i.e. personality differences) under standardised conditions. RESULTS: Individuals were generally more exploratory in more urbanized than in less urbanized areas but only in one year of the study. Exploratory behaviour was not predicted by population density but increased with temperature or showed a temperature optimum. Exploration was consistent over time and individuals that were more exploratory also took higher risks. DISCUSSION: We demonstrated that species which are generally less directly exposed to human activities (e.g., most invertebrates) show behavioural responses to urbanization. Effects of urbanization were year-dependent, suggesting that other environmental conditions interacted with effects of urbanization on beetle behaviour. Furthermore, our results indicate that different personality compositions might cause behavioural differences among populations living in differently urbanized habitats.