Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405736

RESUMO

Characterization of Parkinson's disease (PD) progression using real-world evidence could guide clinical trial design and identify subpopulations. Efforts to curate research populations, the increasing availability of real-world data and recent advances in natural language processing, particularly large language models, allow for a more granular comparison of populations and the methods of data collection describing these populations than previously possible. This study includes two research populations and two real-world data derived (RWD) populations. The research populations are the Harvard Biomarkers Study (HBS, N = 935), a longitudinal biomarkers cohort study with in-person structured study visits; and Fox Insights (N = 36,660), an online self-survey-based research study of the Michael J. Fox Foundation. Real-world cohorts are the Optum Integrated Claims-electronic health records (N = 157,475), representing wide-scale linked medical and claims data and de-identified data from Mass General Brigham (MGB, N = 22,949), an academic hospital system. Structured, de-identified electronic health records data at MGB are supplemented using natural language processing with a large language model to extract measurements of PD progression. This extraction process is manually validated for accuracy. Motor and cognitive progression scores change more rapidly in MGB than HBS (median survival until H&Y 3: 5.6 years vs. >10, p<0.001; mini-mental state exam median decline 0.28 vs. 0.11, p<0.001; and clinically recognized cognitive decline, p=0.001). In the real-world populations, patients are diagnosed more than eleven years later (RWD mean of 72.2 vs. research mean of 60.4, p<0.001). After diagnosis, in real-world cohorts, treatment with PD medications is initiated 2.3 years later on average (95% CI: [2.1-2.4]; p<0.001). This study provides a detailed characterization of Parkinson's progression in diverse populations. It delineates systemic divergences in the patient populations enrolled in research settings vs. patients in the real world. These divergences are likely due to a combination of selection bias and real population differences, but exact attribution of the causes is challenging using existing data. This study emphasizes a need to utilize multiple data sources and to diligently consider potential biases when planning, choosing data sources, and performing downstream tasks and analyses.

2.
NPJ Parkinsons Dis ; 10(1): 58, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480700

RESUMO

Characterization of Parkinson's disease (PD) progression using real-world evidence could guide clinical trial design and identify subpopulations. Efforts to curate research populations, the increasing availability of real-world data, and advances in natural language processing, particularly large language models, allow for a more granular comparison of populations than previously possible. This study includes two research populations and two real-world data-derived (RWD) populations. The research populations are the Harvard Biomarkers Study (HBS, N = 935), a longitudinal biomarkers cohort study with in-person structured study visits; and Fox Insights (N = 36,660), an online self-survey-based research study of the Michael J. Fox Foundation. Real-world cohorts are the Optum Integrated Claims-electronic health records (N = 157,475), representing wide-scale linked medical and claims data and de-identified data from Mass General Brigham (MGB, N = 22,949), an academic hospital system. Structured, de-identified electronic health records data at MGB are supplemented using a manually validated natural language processing with a large language model to extract measurements of PD progression. Motor and cognitive progression scores change more rapidly in MGB than HBS (median survival until H&Y 3: 5.6 years vs. >10, p < 0.001; mini-mental state exam median decline 0.28 vs. 0.11, p < 0.001; and clinically recognized cognitive decline, p = 0.001). In real-world populations, patients are diagnosed more than eleven years later (RWD mean of 72.2 vs. research mean of 60.4, p < 0.001). After diagnosis, in real-world cohorts, treatment with PD medications has initiated an average of 2.3 years later (95% CI: [2.1-2.4]; p < 0.001). This study provides a detailed characterization of Parkinson's progression in diverse populations. It delineates systemic divergences in the patient populations enrolled in research settings vs. patients in the real-world. These divergences are likely due to a combination of selection bias and real population differences, but exact attribution of the causes is challenging. This study emphasizes a need to utilize multiple data sources and to diligently consider potential biases when planning, choosing data sources, and performing downstream tasks and analyses.

3.
PLoS Biol ; 6(5): e107, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18462017

RESUMO

Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process.


Assuntos
Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Fígado/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Transcrição Gênica/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , LDL-Colesterol/sangue , LDL-Colesterol/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 1/genética , Feminino , Genes MHC da Classe II/genética , Genoma Humano , Genótipo , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA