Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815125

RESUMO

Pyrrolizidine alkaloids (PAs) are toxic specialized metabolites produced in several plant species and frequently contaminate herbal teas or livestock feed. In comfrey (Symphytum officinale, Boraginaceae), they are produced in two different organs of the plant, the root and young leaves. In this study, we demonstrate that homospermidine oxidase (HSO), a copper-containing amine oxidase (CuAO) responsible for catalyzing the formation of the distinctive pyrrolizidine ring in PAs, is encoded by two individual genes. Specifically, SoCuAO1 is expressed in young leaves, while SoCuAO5 is expressed in roots. CRISPR/Cas9-mediated knockout of socuao5 resulted in hairy roots (HRs) unable to produce PAs, supporting its function as HSO in roots. Plants regenerated from socuao5 knockout HRs remained completely PA-free until the plants began to develop inflorescences, indicating the presence of another HSO that is expressed only during flower development. Stable expression of SoCuAO1 in socuao5 knockout HRs rescued the ability to produce PAs. In vitro assays of both enzymes transiently expressed in Nicotiana benthamiana confirmed their HSO activity and revealed the ability of HSO to control the stereospecific cyclization of the pyrrolizidine backbone. The observation that the first specific step of PA biosynthesis catalyzed by homospermidine synthase requires only one gene copy, while two independent paralogs are recruited for the subsequent homospermidine oxidation in different tissues of the plant, suggests a complex regulation of the pathway. This adds a new level of complexity to PA biosynthesis, a system already characterized by species-specific, tight spatio-temporal regulation, and independent evolutionary origins in multiple plant lineages.

2.
Plant J ; 117(3): 766-785, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37960967

RESUMO

The plant-specialized metabolite montbretin A (MbA) is being developed as a new treatment option for type-2 diabetes, which is among the ten leading causes of premature death and disability worldwide. MbA is a complex acylated flavonoid glycoside produced in small amounts in below-ground organs of the perennial plant Montbretia (Crocosmia × crocosmiiflora). The lack of a scalable production system limits the development and potential application of MbA as a pharmaceutical or nutraceutical. Previous efforts to reconstruct montbretin biosynthesis in Nicotiana benthamiana (Nb) resulted in low yields of MbA and higher levels of montbretin B (MbB) and montbretin C (MbC). MbA, MbB, and MbC are nearly identical metabolites differing only in their acyl moieties, derived from caffeoyl-CoA, coumaroyl-CoA, and feruloyl-CoA, respectively. In contrast to MbA, MbB and MbC are not pharmaceutically active. To utilize the montbretia caffeoyl-CoA biosynthesis for improved MbA engineering in Nb, we cloned and characterized enzymes of the shikimate shunt of the general phenylpropanoid pathway, specifically hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (CcHCT), p-coumaroylshikimate 3'-hydroxylase (CcC3'H), and caffeoylshikimate esterase (CcCSE). Gene expression patterns suggest that CcCSE enables the predominant formation of MbA, relative to MbB and MbC, in montbretia. This observation is supported by results from in vitro characterization of CcCSE and reconstruction of the shikimate shunt in yeast. Using CcHCT together with montbretin biosynthetic genes in multigene constructs resulted in a 30-fold increase of MbA in Nb. This work advances our understanding of the phenylpropanoid pathway and features a critical step towards improved MbA production in bioengineered Nb.


Assuntos
Flavonas , Hipoglicemiantes , Nicotiana , Trissacarídeos , Hipoglicemiantes/metabolismo , Nicotiana/genética , Ácido Chiquímico/metabolismo , Plantas/metabolismo
3.
Plant Cell ; 34(6): 2364-2382, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212762

RESUMO

Polyamines are important metabolites in plant development and abiotic and biotic stress responses. Copper-containing amine oxidases (CuAOs) are involved in the regulation of polyamine levels in the cell. CuAOs oxidize primary amines to their respective aldehydes and hydrogen peroxide. In plants, aldehydes are intermediates in various biosynthetic pathways of alkaloids. CuAOs are thought to oxidize polyamines at only one of the primary amino groups, a process frequently resulting in monocyclic structures. These oxidases have been postulated to be involved in pyrrolizidine alkaloid (PA) biosynthesis. Here, we describe the identification and characterization of homospermidine oxidase (HSO), a CuAO of Heliotropium indicum (Indian heliotrope), involved in PA biosynthesis. Virus-induced gene silencing of HSO in H. indicum leads to significantly reduced PA levels. By in vitro enzyme assays after transient in planta expression, we show that this enzyme prefers Hspd over other amines. Nuclear magnetic resonance spectroscopy and mass spectrometry analyses of the reaction products demonstrate that HSO oxidizes both primary amino groups of homospermidine (Hspd) to form a bicyclic structure, 1-formylpyrrolizidine. Using tracer feeding, we have further revealed that 1-formylpyrrolizidine is an intermediate in the biosynthesis of PAs. Our study therefore establishes that HSO, a canonical CuAO, catalyzes the second step of PA biosynthesis and provides evidence for an undescribed and unusual mechanism involving two discrete steps of oxidation that might also be involved in the biosynthesis of complex structures in other alkaloidal pathways.


Assuntos
Amina Oxidase (contendo Cobre) , Alcaloides de Pirrolizidina , Aldeídos , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Oxirredução , Poliaminas/metabolismo , Alcaloides de Pirrolizidina/química , Alcaloides de Pirrolizidina/metabolismo
4.
Plant J ; 114(3): 463-481, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880270

RESUMO

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5% of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified, limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this challenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon (Poaceae) under 17 organ-condition combinations, including copper deficiency, heat stress, low phosphate, and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the latter were more specialized and more responsive to environmental change. We found that 1 week of copper deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately 6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the annotated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavonoids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website (https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.


Assuntos
Brachypodium , Brachypodium/metabolismo , Cromatografia Líquida , Teoria da Informação , Cobre/metabolismo , Espectrometria de Massas em Tandem , Metabolômica/métodos , Metaboloma
5.
Plant J ; 111(5): 1453-1468, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816116

RESUMO

Large enzyme families catalyze metabolic diversification by virtue of their ability to use diverse chemical scaffolds. How enzyme families attain such functional diversity is not clear. Furthermore, duplication and promiscuity in such enzyme families limits their functional prediction, which has produced a burgeoning set of incompletely annotated genes in plant genomes. Here, we address these challenges using BAHD acyltransferases as a model. This fast-evolving family expanded drastically in land plants, increasing from one to five copies in algae to approximately 100 copies in diploid angiosperm genomes. Compilation of >160 published activities helped visualize the chemical space occupied by this family and define eight different classes based on structural similarities between acceptor substrates. Using orthologous groups (OGs) across 52 sequenced plant genomes, we developed a method to predict BAHD acceptor substrate class utilization as well as origins of individual BAHD OGs in plant evolution. This method was validated using six novel and 28 previously characterized enzymes and helped improve putative substrate class predictions for BAHDs in the tomato genome. Our results also revealed that while cuticular wax and lignin biosynthetic activities were more ancient, anthocyanin acylation activity was fixed in BAHDs later near the origin of angiosperms. The OG-based analysis enabled identification of signature motifs in anthocyanin-acylating BAHDs, whose importance was validated via molecular dynamic simulations, site-directed mutagenesis and kinetic assays. Our results not only describe how BAHDs contributed to evolution of multiple chemical phenotypes in the plant world but also propose a biocuration-enabled approach for improved functional annotation of plant enzyme families.


Assuntos
Aciltransferases , Solanum lycopersicum , Aciltransferases/metabolismo , Antocianinas/metabolismo , Genoma de Planta/genética , Solanum lycopersicum/genética , Filogenia , Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(21): 11836-11842, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398372

RESUMO

Systematic mappings of protein interactome networks have provided invaluable functional information for numerous model organisms. Here we develop PCR-mediated Linkage of barcoded Adapters To nucleic acid Elements for sequencing (PLATE-seq) that serves as a general tool to rapidly sequence thousands of DNA elements. We validate its utility by generating the ORFeome for Oryza sativa covering 2,300 genes and constructing a high-quality protein-protein interactome map consisting of 322 interactions between 289 proteins, expanding the known interactions in rice by roughly 50%. Our work paves the way for high-throughput profiling of protein-protein interactions in a wide range of organisms.


Assuntos
Fases de Leitura Aberta/genética , Oryza/genética , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA de Plantas/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
7.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34586580

RESUMO

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Assuntos
Hemípteros , Nicotiana , Aciltransferases/metabolismo , Animais , Dessecação , Herbivoria , Insetos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Água
8.
J Chem Ecol ; 45(2): 128-135, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30054770

RESUMO

Pyrrolizidine alkaloids (PAs) are a typical class of plant secondary metabolites that are constitutively produced as part of the plant's chemical defense. While roots are a well-established site of pyrrolizidine alkaloid biosynthesis, comfrey plants (Symphytum officinale; Boraginaceae) have been shown to additionally activate alkaloid production in specialized leaves and accumulate PAs in flowers during a short developmental stage in inflorescence development. To gain a better understanding of the accumulation and role of PAs in comfrey flowers and fruits, we have dissected and analyzed their tissues for PA content and patterns. PAs are almost exclusively accumulated in the ovaries, while petals, sepals, and pollen hardly contain PAs. High levels of PAs are detectable in the fruit, but the elaiosome was shown to be PA free. The absence of 7-acetyllycopsamine in floral parts while present in leaves and roots suggests that the additional site of PA biosynthesis provides the pool of PAs for translocation to floral structures. Our data suggest that PA accumulation has to be understood as a highly dynamic system resulting from a combination of efficient transport and additional sites of synthesis that are only temporarily active. Our findings are further discussed in the context of the ecological roles of PAs in comfrey flowers.


Assuntos
Confrei/química , Alcaloides de Pirrolizidina/química , Cromatografia Líquida de Alta Pressão , Confrei/metabolismo , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Alcaloides de Pirrolizidina/isolamento & purificação , Alcaloides de Pirrolizidina/metabolismo , Extração em Fase Sólida
9.
Planta Med ; 85(14-15): 1177-1186, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31450245

RESUMO

Comfrey is a medicinal plant, extracts of which are traditionally used for the treatment of painful inflammatory muscle and joint problems, because the plant contains allantoin and rosmarinic acid. However, its medicinal use is limited because of its toxic pyrrolizidine alkaloid (PA) content. PAs encompass more than 400 different compounds that have been identified from various plant lineages. To date, only the first pathway-specific enzyme, homospermidine synthase (HSS), has been characterized. HSS catalyzes the formation of homospermidine, which is exclusively incorporated into PAs. HSS has been recruited several times independently in various plant lineages during evolution by duplication of the gene encoding deoxyhypusine synthase (DHS), an enzyme of primary metabolism. Here, we describe the establishment of RNAi knockdown hairy root mutants of HSS in Symphytum officinale. A knockdown of HSS by 60 - 80% resulted in a significant reduction of homospermidine by ~ 86% and of the major PA components 7-acetylintermedine N-oxide and 3-acetylmyoscorpine N-oxide by approximately 60%. The correlation of reduced transcript levels of HSS with reduced levels of homospermidine and PAs provides in planta support for HSS being the central enzyme in PA biosynthesis. Furthermore, the generation of PA-depleted hairy roots might be a cost-efficient way for reducing toxic by-products that limit the medicinal applicability of S. officinale extracts.


Assuntos
Alquil e Aril Transferases/genética , Confrei/química , Regulação da Expressão Gênica de Plantas , Alcaloides de Pirrolizidina/metabolismo , Alquil e Aril Transferases/metabolismo , Confrei/genética , Mutação , Raízes de Plantas/química , Raízes de Plantas/genética , Plantas Medicinais , Alcaloides de Pirrolizidina/toxicidade , Interferência de RNA
10.
Plant Physiol ; 174(1): 47-55, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28275146

RESUMO

Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey (Symphytum officinale; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures.


Assuntos
Confrei/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Alcaloides de Pirrolizidina/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Confrei/metabolismo , Flores/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
12.
Front Plant Sci ; 14: 1067613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844084

RESUMO

The BAHD acyltransferase family is one of the largest enzyme families in flowering plants, containing dozens to hundreds of genes in individual genomes. Highly prevalent in angiosperm genomes, members of this family contribute to several pathways in primary and specialized metabolism. In this study, we performed a phylogenomic analysis of the family using 52 genomes across the plant kingdom to gain deeper insights into its functional evolution and enable function prediction. We found that BAHD expansion in land plants was associated with significant changes in various gene features. Using pre-defined BAHD clades, we identified clade expansions in different plant groups. In some groups, these expansions coincided with the prominence of metabolite classes such as anthocyanins (flowering plants) and hydroxycinnamic acid amides (monocots). Clade-wise motif-enrichment analysis revealed that some clades have novel motifs fixed on either the acceptor or the donor side, potentially reflecting historical routes of functional evolution. Co-expression analysis in rice and Arabidopsis further identified BAHDs with similar expression patterns, however, most co-expressed BAHDs belonged to different clades. Comparing BAHD paralogs, we found that gene expression diverges rapidly after duplication, suggesting that sub/neo-functionalization of duplicate genes occurs quickly via expression diversification. Analyzing co-expression patterns in Arabidopsis in conjunction with orthology-based substrate class predictions and metabolic pathway models led to the recovery of metabolic processes of most of the already-characterized BAHDs as well as definition of novel functional predictions for some uncharacterized BAHDs. Overall, this study provides new insights into the evolution of BAHD acyltransferases and sets up a foundation for their functional characterization.

13.
Annu Rev Plant Biol ; 74: 165-194, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36450296

RESUMO

Plants' ability to chemically modify core structures of specialized metabolites is the main reason why the plant kingdom contains such a wide and rich array of diverse compounds. One of the most important types of chemical modifications of small molecules is the addition of an acyl moiety to produce esters and amides. Large-scale phylogenomics analyses have shown that the enzymes that perform acyl transfer reactions on the myriad small molecules synthesized by plants belong to only a few gene families. This review is focused on describing the biochemistry, evolutionary origins, and chemical ecology implications of one of these families-the BAHD acyltransferases. The growth of advanced metabolomic studies coupled with next-generation sequencing of diverse plant species has confirmed that the BAHD family plays critical roles in modifying nearly all known classes of specialized metabolites. The current and future outlook for research on BAHDs includes expanding their roles in synthetic biology and metabolic engineering.


Assuntos
Aciltransferases , Plantas , Aciltransferases/genética , Aciltransferases/química , Aciltransferases/metabolismo , Plantas/metabolismo , Evolução Biológica , Filogenia
14.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757383

RESUMO

Euphorbia peplus (petty spurge) is a small, fast-growing plant that is native to Eurasia and has become a naturalized weed in North America and Australia. Euphorbia peplus is not only medicinally valuable, serving as a source for the skin cancer drug ingenol mebutate, but also has great potential as a model for latex production owing to its small size, ease of manipulation in the laboratory, and rapid reproductive cycle. To help establish E. peplus as a new model, we generated a 267.2-Mb Hi-C-anchored PacBio HiFi nuclear genome assembly with a BUSCO score of 98.5%, a genome annotation based on RNA-seq data from six organs, and publicly accessible tools including a genome browser and an interactive organ-specific expression atlas. Chromosome number is highly variable across Euphorbia species. Using a comparative analysis of our newly sequenced E. peplus genome with other Euphorbiaceae genomes, we show that variation in Euphorbia chromosome number between E. peplus and Euphorbia lathyris is likely due to fragmentation and rearrangement rather than chromosomal duplication followed by diploidization of the duplicated sequence. Moreover, we found that the E. peplus genome is relatively compact compared with related members of the genus in part due to restricted expansion of the Ty3 transposon family. Finally, we identify a large gene cluster that contains many previously identified enzymes in the putative ingenol mebutate biosynthesis pathway, along with additional gene candidates for this biosynthetic pathway. The genomic resources we have created for E. peplus will help advance research on latex production and ingenol mebutate biosynthesis in the commercially important Euphorbiaceae family.


Assuntos
Euphorbiaceae , Látex , Tamanho do Genoma , Cromossomos
15.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039851

RESUMO

Acylsugars are a class of plant defense compounds produced across many distantly related families. Members of the horticulturally important morning glory (Convolvulaceae) family produce a diverse sub-class of acylsugars called resin glycosides (RGs), which comprise oligosaccharide cores, hydroxyacyl chain(s), and decorating aliphatic and aromatic acyl chains. While many RG structures are characterized, the extent of structural diversity of this class in different genera and species is not known. In this study, we asked whether there has been lineage-specific diversification of RG structures in different Convolvulaceae species that may suggest diversification of the underlying biosynthetic pathways. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed from root and leaf extracts of 26 species sampled in a phylogeny-guided manner. LC-MS/MS revealed thousands of peaks with signature RG fragmentation patterns with one species producing over 300 signals, mirroring the diversity in Solanaceae-type acylsugars. A novel RG from Dichondra argentea was characterized using Nuclear Magnetic Resonance spectroscopy, supporting previous observations of RGs with open hydroxyacyl chains instead of closed macrolactone ring structures. Substantial lineage-specific differentiation in utilization of sugars, hydroxyacyl chains, and decorating acyl chains was discovered, especially among Ipomoea and Convolvulus - the two largest genera in Convolvulaceae. Adopting a computational, knowledge-based strategy, we further developed a high-recall workflow that successfully explained ~72% of the MS/MS fragments, predicted the structural components of 11/13 previously characterized RGs, and partially annotated ~45% of the RGs. Overall, this study improves our understanding of phytochemical diversity and lays a foundation for characterizing the evolutionary mechanisms underlying RG diversification.

16.
Appl Plant Sci ; 8(7): e11376, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32765975

RESUMO

Recent advances in sequencing and informatic technologies have led to a deluge of publicly available genomic data. While it is now relatively easy to sequence, assemble, and identify genic regions in diploid plant genomes, functional annotation of these genes is still a challenge. Over the past decade, there has been a steady increase in studies utilizing machine learning algorithms for various aspects of functional prediction, because these algorithms are able to integrate large amounts of heterogeneous data and detect patterns inconspicuous through rule-based approaches. The goal of this review is to introduce experimental plant biologists to machine learning, by describing how it is currently being used in gene function prediction to gain novel biological insights. In this review, we discuss specific applications of machine learning in identifying structural features in sequenced genomes, predicting interactions between different cellular components, and predicting gene function and organismal phenotypes. Finally, we also propose strategies for stimulating functional discovery using machine learning-based approaches in plants.

17.
Bio Protoc ; 8(3): e2719, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34179257

RESUMO

This protocol delivers a method to determine the biosynthetic capability of comfrey leaves for pyrrolizidine alkaloids independently from other organs like roots or flowers. The protocol applies and combines radioactive tracer experiments with standard and modern techniques like thin layer chromatography (TLC), solid-phase extraction (SPE), high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA