Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chem Biodivers ; 20(4): e202201079, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36840686

RESUMO

The article presents magnetoliposomes as potential carriers of doxorubicin. The magnetic properties of nanoparticles embedded in liposomes enable the targeting of drug-loaded carriers to cancer cells and subsequent release of their payload using an external alternating magnetic field as a trigger. The cytotoxicity of empty and doxorubicin-loaded magnetoliposomes in the absence and after exposure to magnetic field was evaluated in cancerous and normal breast cells. The characteristic shows the carrier with size distribution <130 nm, slightly negative zeta potential and polydispersity index <0.2. Doxorubicin was encapsulated in magnetoliposomes with an efficiency of 31 % and released in the presence of an alternating magnetic field at 50 %. Magnetoliposomes with drug provided high cytotoxic effect on tumor cells and low cytotoxic effect on normal cells. The research conducted in this article may indicate the potential application of the studied magnetoliposomes in release of drugs under the influence of magnetic field in cancer cells.


Assuntos
Antineoplásicos , Doxorrubicina , Preparações de Ação Retardada/farmacologia , Doxorrubicina/farmacologia , Lipossomos , Campos Magnéticos , Portadores de Fármacos
2.
Phys Chem Chem Phys ; 24(5): 3066-3077, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040466

RESUMO

Lipidic-liquid crystalline nanostructures (lipidic cubic phases), which are biomimetic and stable in an excess of water, were used as a convenient environment to investigate the transport properties of the membrane antiporter E. coli CLC-1 (EcCLC). The chloride ion transfer by EcCLC was studied by all-atom molecular dynamics simulations combined with electrochemical methods at pH 7 and pH 5. The cubic phase film was used as the membrane between the chloride donor and receiving compartments and it was placed on the glassy carbon electrode and immersed in the chloride solution. Structural characterization of lipidic mesoscopic systems with and without the incorporation of EcCLC was performed using small-angle X-ray scattering. The EcCLC transported chloride ions more efficiently at more acidic pH, and the resistance of the film decreased at lower pH. 4,4-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) employed as an inhibitor of the protein was shown to decrease the transport efficiency upon hydrolysis to DADS at both pH 7 and pH 5. The molecular dynamics simulations, performed for the first time in lipidic cubic phases for EcCLC, allowed studying the collective movements of chloride ions which can help in elucidating the mechanism of transporting the ions by the EcCLC antiporter. The protein modified lipidic cubic phase film is a convenient and simple system for screening potential inhibitors of integral membrane proteins, as demonstrated by the example of the EcCLC antiporter. The use of lipidic cubic phases may also be important for the further development of new electrochemical sensors for membrane proteins and enzyme electrodes.


Assuntos
Antiporters , Escherichia coli , Cloretos/metabolismo , Escherichia coli/metabolismo , Lipídeos , Simulação de Dinâmica Molecular
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163132

RESUMO

In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.


Assuntos
Mitocôndrias/metabolismo , Modelos Biológicos , Canais de Potássio/análise , Canais de Potássio/metabolismo , Animais , Humanos , Transporte de Íons
4.
Molecules ; 25(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106568

RESUMO

It has been proven and confirmed in numerous repeated tests, that the use of a combination of several therapeutic methods gives much better treatment results than in the case of separate therapies. Particularly promising is the combination of ionizing radiation and magnetic hyperthermia in one drug. To achieve this objective, magnetite nanoparticles have been modified in their core with α emitter 225Ac, in an amount affecting only slightly their magnetic properties. By 3-phosphonopropionic acid (CEPA) linker nanoparticles were conjugated covalently with trastuzumab (Herceptin®), a monoclonal antibody that recognizes ovarian and breast cancer cells overexpressing the HER2 receptors. The synthesized bioconjugates were characterized by transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) measurement, thermogravimetric analysis (TGA) and application of 131I-labeled trastuzumab for quantification of the bound biomolecule. The obtained results show that one 225Ac@Fe3O4-CEPA-trastuzumab bioconjugate contains an average of 8-11 molecules of trastuzumab. The labeled nanoparticles almost quantitatively retain 225Ac (>98%) in phosphate-buffered saline (PBS) and physiological salt, and more than 90% of 221Fr and 213Bi over 10 days. In human serum after 10 days, the fraction of 225Ac released from 225Ac@Fe3O4 was still less than 2%, but the retention of 221Fr and 213Bi decreased to 70%. The synthesized 225Ac@Fe3O4-CEPA-trastuzumab bioconjugates have shown a high cytotoxic effect toward SKOV-3 ovarian cancer cells expressing HER2 receptor in-vitro. The in-vivo studies indicate that this bioconjugate exhibits properties suitable for the treatment of cancer cells by intratumoral or post-resection injection. The intravenous injection of the 225Ac@Fe3O4-CEPA-trastuzumab radiobioconjugate is excluded due to its high accumulation in the liver, lungs and spleen. Additionally, the high value of a specific absorption rate (SAR) allows its use in a new very perspective combination of α radionuclide therapy with magnetic hyperthermia.


Assuntos
Ado-Trastuzumab Emtansina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Nanopartículas de Magnetita/química , Radioimunoterapia , Actínio/química , Actínio/farmacologia , Ado-Trastuzumab Emtansina/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Hipertermia Induzida/métodos , Magnetismo , Receptor ErbB-2/genética
5.
Nanotechnology ; 30(31): 315101, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30991371

RESUMO

Magnetoliposomes are promising candidates for the development of selective drug delivery systems in the treatment of cancer. Those nanosystems were tested as carriers of a strong chemotherapeutic agent, doxorubicin, which is used against breast cancer. Herein, the magnetic properties of hydrophobic iron oxide nanoparticles located exclusively in the lipid bilayer were used to release this drug from the magnetoliposomes. The cytotoxic activity of the nanostructures against the normal and cancer cell lines was determined on the basis of cells viability measurement after incubation with different concentrations of these nanomaterials. In the same way, the effectiveness of killing cancer cells in combination with exposure to magnetic field was also evaluated. These experiments confirmed that the nanostructures composed of liposomes and magnetic nanoparticles are not cytotoxic. However, magnetoliposomes loaded with doxorubicin were effective and selective in reducing the viability of human breast tumor cell lines. In this paper, we demonstrated the promising application of the studied magnetoliposomes as carriers of doxorubicin released under the influence of magnetic field in tumor cells.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Nanopartículas de Magnetita/química , Antibióticos Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Lipossomos/química , Células MCF-7 , Campos Magnéticos
6.
Chemistry ; 22(49): 17715-17724, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27786376

RESUMO

Studies on magnetoliposomes (MLUV) as potential carriers for magnetic-field-dependent drug delivery are presented. The systems were formed with hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) confined within the bilayer of the liposomes. The nanomechanical properties of bilayer lipid membranes were evaluated and related to the amount of incorporated SPIONs. It was found that the presence of SPIONs in the lipid membrane leads to overall stiffening and increases morphological inhomogeneity, facilitating rupture of the MLUV membrane in a low-frequency alternating magnetic field (AMF). To verify the findings, doxorubicin release from MLUVs in the presence and absence of an AMF was measured. Under experimental conditions, drug release proceeds through MLUV rupture induced by mechanical vibration of SPIONs rather than through localized heating in the vicinity of the SPIONs.


Assuntos
Doxorrubicina/química , Bicamadas Lipídicas/química , Lipossomos/química , Doxorrubicina/farmacocinética , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Campos Magnéticos
7.
Int J Biol Macromol ; 266(Pt 1): 131158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552682

RESUMO

Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.


Assuntos
Quitosana , Doxorrubicina , Violeta Genciana , Nióbio , Quitosana/química , Doxorrubicina/química , Adsorção , Nióbio/química , Violeta Genciana/química , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Teoria da Densidade Funcional , Óxidos/química , Água/química , Soluções , Purificação da Água/métodos
8.
Langmuir ; 29(47): 14560-9, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24175734

RESUMO

Doxorubicin is an anthracycline that has found wide use as a chemotherapeutic agent, with the primary target of its action being nuclear DNA. Despite the large body of knowledge on this family of compounds, the mechanism of doxorubicin penetration through the cellular or nuclear membrane remains understood to a limited extent. The plasma membrane acts as a barrier to the permeation of polar molecules, and this effect is mainly due to the hydrophobicity of membrane interior. The partitioning of DOX molecules into the lipid bilayer must thus be the basis for its passive transport across the biological membrane and therefore a key area of research activity lies in understanding how the structure of the anthracycline influences its interactions with amphiphilic interfaces. We have studied interactions between doxorubicin and Langmuir/Langmuir-Blodgett monomolecular films of octadecylamine (C18NH2), dihexadecylphosphate (DHP) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and DMPC bilayer films (Langmuir-Schaeffer) on a polycrystalline gold surface using ellipsometry, cyclic voltammetry, electrochemical impedance spectroscopy, and quartz crystal microbalance measurements. For all biomimetic films there is a substantial interaction between doxorubicin and the interface, and the extent of this interaction depends on the hydrophobic/hydrophilic properties of the film formed and its organization.


Assuntos
Antibióticos Antineoplásicos/química , Doxorrubicina/química , Técnicas Eletroquímicas , Bicamadas Lipídicas/química , Aminas/química , Dimiristoilfosfatidilcolina/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Organofosfatos/química , Propriedades de Superfície
9.
Langmuir ; 29(47): 14570-9, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24175753

RESUMO

Doxorubicin is an anthracycline that has found wide use as a chemotherapeutic agent, with the primary limitation to its use being cardiotoxicity. Depending on the identity and location of pendent side groups, the anthracyclines exhibit varying degrees of chemotherapeutic activity and toxicity, and a key area of research activity lies in understanding how the structure of the anthracycline influences its interactions with amphiphilic interfaces. We have studied interactions between doxorubicin and interfacial adlayers of octadecylamine (C18NH2), dihexadecylphosphate (DHP), and both monolayers and bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) on mica using time- and frequency-resolved spectroscopic measurements. We report surface-enhanced resonance Raman data and fluorescence lifetime and anisotropy imaging data for doxorubicin at these interfaces. For all monolayers, there is a substantial interaction between doxorubicin and the interface. For DMPC bilayers, the extent of the interaction between doxorubicin and the interface depends on how the interface was formed.


Assuntos
Aminas/química , Antibióticos Antineoplásicos/química , Dimiristoilfosfatidilcolina/química , Doxorrubicina/química , Bicamadas Lipídicas/química , Organofosfatos/química , Anisotropia , Bicamadas Lipídicas/síntese química , Microscopia de Fluorescência , Conformação Molecular , Análise Espectral Raman , Propriedades de Superfície , Fatores de Tempo
10.
Biomacromolecules ; 14(3): 828-33, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23327587

RESUMO

To limit cytotoxicity of anticancer drugs against healthy cells, an appropriate carrier should be synthesized to deliver the drug to the tumor tissue only. A good solution is to anchor a magnetic nanoparticle to the molecule of the drug and to use a properly directed external magnetic field. The synthesis of the conjugate of doxorubicin with magnetic nanoparticles (iron oxide) modified by us resulted in a substantial depression of the aggregation process of the nanoparticles and therefore allowed the correct examination of cytotoxicity of the modified drug. It has been shown, by performing the electrochemical microbalance measurements, that the use of magnetic field guaranteed the efficient delivery of the drug to the desired place. The change in the synthesis procedure led to an increase in the number of DOX molecules attached to one magnetic nanoparticle. The release of the drug took place at pH 5.8 (and below it), which pH characterizes the cancer cells. It has also been found that while the iron oxide magnetic nanoparticles were not cytotoxic toward human urinary bladder carcinoma cells UM-UC-3, the tumor cell sensitivity of the DOX-Np complex was slightly higher in comparison to the identical concentration of doxorubicin alone.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Compostos Férricos/química , Humanos , Concentração de Íons de Hidrogênio
11.
Biomacromolecules ; 14(6): 1867-76, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23597098

RESUMO

Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets. A complementary physicochemical analysis revealed that a fraction of the nanoparticles was embedded in the microvessel walls, while the other nanoparticles were in the core of the vessel. SQUID (superconducting quantum interference device) measurements indicated that the incorporated nanoparticles retained their superparamagnetic properties; thus, the resulting nanoparticle-modified microvessels can be directed by an external magnetic field. As a result of these features, these microvessels may be useful as drug carriers in biomedical applications. To demonstrate the encapsulation of drug molecules, two labeled mRNA cap analogues, nucleotide-derived potential anticancer agents, were used. It was shown that the cap analogues are located in the aqueous core of the microvessels and can be released to the external solution by spontaneous permeation through the polymer walls. Mass spectrometry analysis confirmed that the cap analogues were preserved during encapsulation, storage, and release. This finding provides a foundation for the future development of anticancer therapies and for the delivery of nucleotide-based therapeutics.


Assuntos
Magnetismo , Nanopartículas , Polímeros/química , Pirróis/química , Capuzes de RNA , RNA Mensageiro/química , Microscopia Eletrônica de Varredura , Difração de Pó
12.
Anal Bioanal Chem ; 405(11): 3753-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23241816

RESUMO

Since the early 70s electrochemistry has been used as a powerful analytical technique for monitoring electroactive species in living organisms. In particular, after extremely rapid evolution of new micro and nanotechnology it has been established as an invaluable technique ranging from experiments in vivo to measurement of exocytosis during communication between cells under in vitro conditions. This review highlights recent advances in the development of electrochemical sensors for selective sensing of one of the most important neurotransmitters--dopamine. Dopamine is an electroactive catecholamine neurotransmitter, abundant in the mammalian central nervous system, affecting both cognitive and behavioral functions of living organisms. We have not attempted to cover a large time-span nor to be comprehensive in presenting the vast literature devoted to electrochemical dopamine sensing. Instead, we have focused on the last five years, describing recent progress as well as showing some problems and directions for future development.


Assuntos
Técnicas Biossensoriais/métodos , Dopamina/análise , Técnicas Eletroquímicas/métodos , Neurotransmissores/análise , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos Implantados , Humanos
13.
Bioelectrochemistry ; 151: 108372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680942

RESUMO

The renal-outer-medullary­potassium (ROMK2) channel modulates potassium transport in the kidney. It has been postulated that the ROMK2 is the pore-forming subunit of the mitochondrial ATP-sensitive potassium channel as a mediator of cardioprotection. In this study, cell-free synthesis of the ROMK2 was performed in presence of membrane scaffold protein (MSP1D1) nanodiscs. Activity measurements were achieved after channel reconstitution into the planar lipid bilayer and tethered bilayer lipid membranes. Both methods allowed for monitoring of channel function, verified with channel blocking and activation/re-activation experiments. The primary function of the mitochondrial potassium channels is to regulate the potential of the mitochondrial membrane, which allows them to play an important role in cytoprotection. This work focuses on obtaining the ROMK2 using a cell-free expression system, followed by the incorporation of the channel protein into the lipid bilayer and studying the influence of voltage changes and molecular modulators on channel activity. Channel activity was measured after its reconstitution into two models of lipid bilayers - BLM (Bilayer Lipid Membrane) and tBLM (Tethered Bilayer Lipid Membrane) deposited on a solid gold electrode. These two model membranes and electrochemical measurements made it possible to measure the flux of K+ ions in the presence of channel modulators.


Assuntos
Bicamadas Lipídicas , Canais de Potássio , Bicamadas Lipídicas/química , Mitocôndrias/metabolismo , Proteínas de Membrana/metabolismo , Potássio
14.
Front Public Health ; 11: 1249509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035301

RESUMO

Introduction: From the moment the first cases of coronavirus disease were detected in December 2019 until the announcement and duration of the pandemic, it was a negative experience for people around the world in various spheres of life. In connection with it, there have been many changes in our daily lives related to lifestyle, physical activity, or the mental sphere. The aim of the following paper is to determine the correlation between the COVID-19 pandemic and alcohol drinking, smoking, physical exercise, and lifestyle among nursing students in Poland. Methods: The study was conducted among nursing students at Wroclaw Medical University before and during the COVID-19 pandemic. The survey consisted of completing the same anonymous online questionnaires five times by the same research group. The majority of respondents were women in the age between 18 and 30 years old and the significance level of data analysis was set at p < 0.05. Results and discussion: In October 2020, we recorded a large number of respondents experiencing anxiety/fear or being more stressed. Between the measurements, the highest average level of alcohol addiction (p < 0.001) was in October 2021 (8.71). Moreover, the percentage of respondents who felt as before increased (p = 0.021). As the pandemic continued, there was a systematic decline in the physical activity level (p < 0.001). In conclusion, the COVID-19 pandemic had a serious impact on the daily lives of the students.


Assuntos
Consumo de Bebidas Alcoólicas , COVID-19 , Exercício Físico , Fumar , Estudantes de Enfermagem , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Consumo de Bebidas Alcoólicas/epidemiologia , COVID-19/epidemiologia , COVID-19/psicologia , Estudos Longitudinais , Pandemias , Polônia/epidemiologia , Estudantes de Enfermagem/psicologia , Universidades , Qualidade de Vida
15.
Chemistry ; 18(1): 310-20, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22143983

RESUMO

We report on the preparation of water-filled polymer microvessels through the photopolymerization of pyrrole in a water/chloroform emulsion. The resulting structures were characterized by complementary spectroscopic and microscopic techniques, including Raman spectroscopy, XPS, SEM, and TEM. The encapsulation of fluorescent, magnetic, and ionic species within the microvessels has been demonstrated. Confocal microscopy and fluorescence anisotropy measurements revealed that the encapsulated chromophore (Rhodamine 6G) resides within voids in the capsules; however, strong interaction of the dye with polypyrrole results in a measurable decrease in its rotational dynamics. Microvessels loaded with ferrofluid exhibit magnetic properties, and their structures can be directed with an external magnetic field. TEM measurements allowed imaging of individual nanoparticles entrapped within the vessels. The application of Cu(2+)-loaded microvessels as a transducer layer in all-solid-state ion-selective electrodes was also demonstrated.


Assuntos
Corantes Fluorescentes , Nanopartículas/química , Polímeros/química , Polímeros/síntese química , Pirróis/química , Pirróis/síntese química , Rodaminas , Algoritmos , Cobre/química , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
16.
J Phys Chem A ; 116(17): 4330-7, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22493944

RESUMO

Doxorubicin exhibits unusual photoreactivity in aqueous solutions. Our data show that there are two distinct photoreactive pathways for doxorubicin. One is a two-step process that leads to the formation of 3-methoxysalicylic acid, a stable degradation product. The other pathway is a photoreduction of doxorubicin to form the corresponding dihydroquinone, which undergoes spontaneous oxidation mediated by dissolved oxygen to recover doxorubicin with the formation of hydrogen peroxide. Our data account for the known nonlinear dependence of doxorubicin fluorescence intensity on concentration.


Assuntos
Doxorrubicina/química , Catálise , Peróxido de Hidrogênio/química , Estrutura Molecular , Processos Fotoquímicos , Espécies Reativas de Oxigênio/química , Salicilatos/síntese química , Salicilatos/química , Raios Ultravioleta
17.
Artigo em Inglês | MEDLINE | ID: mdl-35742755

RESUMO

The new disease COVID-19, induced by SARS-CoV-2, causes acute respiratory infection. Many countries, including Poland, began to set a variety of different restrictions to reduce the spread of the virus. Most students had problems with online lessons. The study was conducted among second year medicine students of the Medical University of Wroclaw, and after the entire process of verification 200 respondents were accepted. The research consisted of completing the same anonymous online questionnaires twice in March and October 2020. This finally allowed for a critical assessment of the impact of the pandemic and its restrictions on the students' daily lives. During the online classes, low levels of physical activity persisted (p = 0.718), whereas time spent sitting increased (p < 0.001). Despite positive changes in declared snacking (p = 0.061), we observed significant drops in the index of healthy diet (p = 0.001) and nutritional knowledge (p < 0.001) as well as an increase in the consumption of fast-food (p < 0.001) and energy drinks (p = 0.019). Reduced nutritional knowledge can cause a decrease in attention to healthy food preparation and much more frequent consumption of fast-food.


Assuntos
COVID-19 , Estudantes de Medicina , COVID-19/epidemiologia , Exercício Físico , Comportamento Alimentar , Humanos , Estilo de Vida , Pandemias , SARS-CoV-2 , Inquéritos e Questionários , Universidades
18.
Nanomaterials (Basel) ; 12(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269283

RESUMO

The study aimed to synthesize and characterize the magnetic drug carrier modified with terbium (III) ions. The addition of terbium extends the possibilities of their applications for targeted anticancer radiotherapy as well as for imaging techniques using radioisotopes emitting ß+, ß-, α, and γ radiation. The synthesis of iron oxide nanoparticles stabilized with citrates using the co-precipitation method (IONP @ CA) was carried out during the experimental work. The obtained nanoparticles were used to synthesize a conjugate containing terbium ions and guanosine-5'-monophosphate as an analog of drugs from the thiopurine group. Conjugates and their components were characterized using Transmission Electron Microscopy, infrared spectroscopy, X-ray microanalysis, spectrofluorimetry, and thermogravimetric analysis. The hybrid was also investigated with Langmuir layers to check the interaction with analogs of biological membranes.

19.
Pharmaceutics ; 14(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015306

RESUMO

Iron oxide nanoparticles are commonly used in many medical applications as they can be easily modified, have a high surface-to-volume ratio, and are biocompatible and biodegradable. This study was performed to synthesize nanoparticles designed for multimodal HER2-positive cancer treatment involving radionuclide therapy and magnetic hyperthermia. The magnetic core (Fe3O4) was coated with a gold-198 layer creating so-called core-shell nanoparticles. These were then further modified with a bifunctional PEG linker and monoclonal antibody to achieve the targeted therapy. Monoclonal antibody-trastuzumab was used to target specific breast and nipple HER2-positive cancer cells. The nanoparticles measured by transmission electron microscopy were as small as 9 nm. The bioconjugation of trastuzumab was confirmed by two separate methods: thermogravimetric analysis and iodine-131 labeling. Synthesized nanoparticles showed that they are good heat mediators in an alternating magnetic field and exhibit great specific binding and internalization capabilities towards the SKOV-3 (HER2 positive) cancer cell line. Radioactive nanoparticles also exhibit capabilities regarding spheroid degradation without and with the application of magnetic hyperthermia with a greater impact in the case of the latter. Designed radiobioconjugate shows great promise and has great potential for in vivo studies regarding magnetic hyperthermia and radionuclide combined therapy.

20.
Langmuir ; 27(3): 1100-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21218807

RESUMO

We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.


Assuntos
Doxorrubicina/química , Eletrodos , Ressonância de Plasmônio de Superfície/métodos , Eletroquímica , Ouro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA