Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(4): 042301, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-23006079

RESUMO

We report a precise determination of the (19)Ne half-life to be T(1/2)=17.262±0.007 s. This result disagrees with the most recent precision measurements and is important for placing bounds on predicted right-handed interactions that are absent in the current standard model. We are able to identify and disentangle two competing systematic effects that influence the accuracy of such measurements. Our findings prompt a reassessment of results from previous high-precision lifetime measurements that used similar equipment and methods.

2.
Appl Radiat Isot ; 75: 30-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434889

RESUMO

A basic phenomenological approach has been presented in three recent papers (Kshetri R., 2012. JINST 7, P04008; Kshetri R., 2012. JINST 7, P07006; Kshetri R., 2012. JINST 7, P12007) for understanding the operation of encapsulated type composite detectors including the SPI spectrometer. In the present paper, we have considered the fact that the experimental two-fold events between two detectors include the three and higher fold events between the same two detectors. The formalism has been further developed and the peak-to-total ratio of a general composite detector are predicted for energy region with no direct experimental information about them. At 8MeV, the peak-to-total ratio for the SPI spectrometer and a very large detector (comprising of infinite number of single HPGe modules) are found to be 9% and 12%, respectively. The predictions for fold distribution of the SPI spectrometer are found to be in agreement with experimental data. Our formulation does not include ad-hoc fits, but expressions that are justifiable by probability flow arguments. Instead of using an empirical method or simulation, we present a novel approach for calculating the peak-to-total ratio of the SPI spectrometer for high gamma energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA