Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769275

RESUMO

Tuberculosis remains a serious killer among infectious diseases due to its incidence, mortality, and occurrence of resistant mycobacterial strains. The challenge to discover new antimycobacterial agents forced us to prepare a series of N-(1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-6-yl)(hetero)aryl-2-carboxamides 1-19 via the acylation of 6-aminobenzo[c][1,2]oxaborol-1(3H)-ol with various activated (hetero)arylcarboxylic acids. These novel compounds have been tested in vitro against a panel of clinically important fungi and bacteria, including mycobacteria. Some of the compounds inhibited the growth of mycobacteria in the range of micromolar concentrations and retained this activity also against multidrug-resistant clinical isolates. Half the maximal inhibitory concentrations against the HepG2 cell line indicated an acceptable toxicological profile. No growth inhibition of other bacteria and fungi demonstrated selectivity of the compounds against mycobacteria. The structure-activity relationships have been derived and supported with a molecular docking study, which confirmed a selectivity toward the potential target leucyl-tRNA synthetase without an impact on the human enzyme. The presented compounds can become important materials in antimycobacterial research.


Assuntos
Aminoacil-tRNA Sintetases , Anti-Infecciosos , Mycobacterium tuberculosis , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antituberculosos/farmacologia , Fungos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Amidas/química , Amidas/farmacologia
2.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806090

RESUMO

The vicarious nucleophilic substitution of hydrogen (VNS) reaction in electron-deficient nitroquinolines was studied. Properties of all new products have been characterized by several techniques: MS, HRMS, FTIR, GC-MS, electronic absorption spectroscopy, and multinuclear NMR. The structures of 4-chloro-8-nitroquinoline, 8-(tert-butyl)-2-methyl-5-nitroquinoline, 9-(8-nitroquinolin-7-yl)-9H-carbazole and (Z)-7-(9H-carbazol-9-yl)-8-(hydroxyimino)quinolin-5(8H)-one were determined by single-crystal X-ray diffraction measurements. The 9-(8-nitroquinolin-7-yl)-9H-carbazole and (Z)-7-(9H-carbazol-9-yl)-8-(hydroxyimino)quinolin-5(8H)-one illustrate the nitro/nitroso conversion within VNS reaction. Additionally, 9-(8-isopropyl-2-((8-isopropyl-2-methyl-5-nitroquinolin-6-yl)methyl)-5-nitrosoquinolin-6-yl)-9H-carbazole is presented as a double VNS product. It is postulated that the potassium counterion interacts with the oxygen on the nitro group, which could influence nucleophile attack in that way.

3.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230728

RESUMO

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Tuberculose/tratamento farmacológico , Aminoácidos/química , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Rotação Ocular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazinamida/química , Staphylococcus aureus/efeitos dos fármacos
4.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925695

RESUMO

We report the design, synthesis, and in vitro antimicrobial activity of a series of N-substituted 3-aminopyrazine-2-carboxamides with free amino groups in position 3 on the pyrazine ring. Based on various substituents on the carboxamidic moiety, the series is subdivided into benzyl, alkyl, and phenyl derivatives. The three-dimensional structures of the title compounds were predicted using energy minimization and low mode molecular dynamics under AMBER10:EHT forcefield. Compounds were evaluated for antimycobacterial, antibacterial, and antifungal activities in vitro. The most active compound against Mycobacterium tuberculosis H37Rv (Mtb) was 3-amino-N-(2,4-dimethoxyphenyl)pyrazine-2-carboxamide (17, MIC = 12.5 µg/mL, 46 µM). Antimycobacterial activity against Mtb and M. kansasii along with antibacterial activity increased among the alkyl derivatives with increasing the length of carbon side chain. Antibacterial activity was observed for phenyl and alkyl derivatives, but not for benzyl derivatives. Antifungal activity was observed in all structural subtypes, mainly against Trichophyton interdigitale and Candida albicans. The four most active compounds (compounds 10, 16, 17, 20) were evaluated for their in vitro cytotoxicity in HepG2 cancer cell line; only compound 20 was found to exert some level of cytotoxicity. Compounds belonging to the current series were compared to previously published, structurally related compounds in terms of antimicrobial activity to draw structure activity relationships conclusions.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Antibacterianos/química , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Pirazinas/química
5.
Molecules ; 25(1)2019 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-31905775

RESUMO

We prepared a series of substituted N-(pyrazin-2-yl)benzenesulfonamides as an attempt to investigate the effect of different linkers connecting pyrazine to benzene cores on antimicrobial activity when compared to our previous compounds of amide or retro-amide linker type. Only two compounds, 4-amino-N-(pyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 25 µM) and 4-amino-N-(6-chloropyrazin-2-yl)benzenesulfonamide (MIC = 6.25 µg/mL, 22 µM) exerted good antitubercular activity against M. tuberculosis H37Rv. However, they were excluded from the comparison as they-unlike the other compounds-possessed the pharmacophore for the inhibition of folate pathway, which was proven by docking studies. We performed target fishing, where we identified matrix metalloproteinase-8 as a promising target for our title compounds that is worth future exploration.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Anti-Infecciosos/química , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacologia , Fenômenos Químicos , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/química , Benzenossulfonamidas
6.
Molecules ; 22(2)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157178

RESUMO

Aminodehalogenation of 3-chloropyrazine-2-carboxamide with variously substituted benzylamines yielded a series of fifteen 3-benzylaminopyrazine-2-carboxamides. Four compounds possessed in vitro whole cell activity against Mycobacterium tuberculosis H37Rv that was at least equivalent to that of the standard pyrazinamide. MIC values ranged from 6 to 42 µM. The best MIC (6 µM) was displayed by 3-[(4-methylbenzyl)amino]pyrazine-2-carboxamide (8) that also showed low cytotoxicity in the HepG2 cell line (IC50 ≥ 250 µM). Only moderate activity against Enterococcus faecalis and Staphylococcus aureus was observed. No activity was detected against any of tested fungal strains. Molecular docking with mycobacterial enoyl-ACP reductase (InhA) was performed to investigate the possible target of the prepared compounds. Active compounds shared common binding interactions of known InhAinhibitors. Antimycobacterial activity of the title compounds was compared to the previously published benzylamino-substituted pyrazines with differing substitution on the pyrazine core (carbonitrile moiety). The title series possessed comparable activity and lower cytotoxicity than molecules containing a carbonitrile group on the pyrazine ring.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Pirazinamida/síntese química , Pirazinamida/farmacologia , Amidas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antituberculosos/síntese química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirazinas/química , Relação Estrutura-Atividade
7.
Molecules ; 22(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335571

RESUMO

A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some cases. Although not initially planned, the reaction conditions were modified to populate this double substituted series. The final compounds were tested against four mycobacterial strains. N-(2-methylbenzyl)-3-((2-methylbenzyl)amino)pyrazine-2-carboxamide (1a) and N-(3,4-dichlorobenzyl)-3-((3,4-dichlorobenzyl)amino)pyrazine-2-carboxamide (9a) proved to be the most effective against Mycobacterium tuberculosis H37Rv, with MIC = 12.5 µg·mL-1. Compounds were screened for antibacterial activity. The most active compound was 3-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (5) against Staphylococcus aureus with MIC = 7.81 µM, and Staphylococcus epidermidis with MIC = 15.62 µM. HepG2 in vitro cytotoxicity was evaluated for the most active compounds; however, no significant toxicity was detected. Compound 9a was docked to several conformations of the enoyl-ACP-reductase of Mycobacterium tuberculosis. In some cases, it was capable of H-bond interactions, typical for most of the known inhibitors.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Pirazinas/síntese química , Pirazinas/farmacologia , Antibacterianos/química , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade
8.
Molecules ; 22(4)2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28338641

RESUMO

Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cis-nerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug-sesquiterpene interactions should be verified in in vivo experiments.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Farneseno Álcool/farmacologia , Fígado/enzimologia , Sesquiterpenos/farmacologia , Xenobióticos/metabolismo , Animais , Inibidores das Enzimas do Citocromo P-450/química , Farneseno Álcool/química , Humanos , Concentração Inibidora 50 , Cinética , Ratos , Sesquiterpenos/química , Frações Subcelulares/enzimologia
9.
Parasitology ; 142(5): 648-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25373326

RESUMO

The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.


Assuntos
Albendazol/farmacocinética , Anti-Helmínticos/farmacocinética , Cestoides/enzimologia , Mebendazol/análogos & derivados , Mebendazol/farmacocinética , Albendazol/farmacologia , Oxirredutases do Álcool/metabolismo , Animais , Anti-Helmínticos/farmacologia , Biotransformação , Catalase/metabolismo , Cestoides/efeitos dos fármacos , Cestoides/ultraestrutura , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Intestino Delgado/parasitologia , Isoenzimas/metabolismo , Mebendazol/farmacologia , Oxigenases de Função Mista/metabolismo , Moniezíase/parasitologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Peroxidase/metabolismo , Ovinos , Doenças dos Ovinos/parasitologia , Superóxido Dismutase/metabolismo
10.
Molecules ; 20(5): 8687-711, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26007174

RESUMO

A series of N-alkyl-3-(alkylamino)pyrazine-2-carboxamides and their N-alkyl-3-chloropyrazine-2-carboxamide precursors were prepared. All compounds were characterized by analytical methods and tested for antimicrobial and antiviral activity. The antimycobacterial MIC values against Mycobacterium tuberculosis H37Rv of the most effective compounds, 3-(hexylamino)-, 3-(heptylamino)- and 3-(octylamino)-N-methyl-pyrazine-2-carboxamides 14‒16, was 25 µg/mL. The compounds inhibited photosystem 2 photosynthetic electron transport (PET) in spinach chloroplasts. This activity was strongly connected with the lipophilicity of the compounds. For effective PET inhibition longer alkyl chains in the 3-(alkylamino) substituent in the N-alkyl-3-(alkylamino)pyrazine-2-carboxamide molecule were more favourable than two shorter alkyl chains.


Assuntos
Antituberculosos/farmacologia , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Pirazinamida/farmacologia , Pirazinas/farmacologia , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Pirazinamida/síntese química , Pirazinamida/química , Pirazinas/síntese química , Spinacia oleracea/metabolismo , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 24(2): 450-3, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24388809

RESUMO

A series of pyrazinamide derivatives with alkylamino substitution was designed, synthesized and tested for their ability to inhibit the growth of selected mycobacterial, bacterial and fungal strains. The target structures were prepared from the corresponding 5-chloro (1) or 6-chloropyrazine-2-carboxamide (2) by nucleophilic substitution of chlorine by various non-aromatic amines (alkylamines). To determine the influence of alkyl substitution, corresponding amino derivatives (1a, 2a) and compounds with phenylalkylamino substitution were prepared. Some of the compounds exerted antimycobacterial activity against Mycobacterium tuberculosis H37Rv significantly better than standard pyrazinamide and corresponding starting compounds (1 and 2). Basic structure-activity relationships are presented. Only weak antibacterial and no antifungal activity was detected.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Pirazinamida/síntese química , Pirazinamida/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antituberculosos/síntese química , Antituberculosos/farmacologia , Cristalografia , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia
12.
Molecules ; 19(1): 651-71, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24402198

RESUMO

In this work a series of 15 N-benzylamine substituted 5-amino-6-methyl-pyrazine-2,3-dicarbonitriles was prepared by the aminodehalogenation reactions using microwave assisted synthesis with experimentally set and proven conditions. This approach for the aminodehalogenation reaction was chosen due to its higher yields and shorter reaction times. The products of this reaction were characterized by IR, NMR and other analytical data. The compounds were evaluated for their antibacterial, antifungal and herbicidal activity. Compounds 3 (R=3,4-Cl), 9 (R=2-Cl) and 11 (R=4-CF3) showed good antimycobacterial activity against Mycobacterium tuberculosis (MIC=6.25 µg/mL). It was found that the lipophilicity is important for antimycobacterial activity and the best substitution on the benzyl moiety of the compounds is a halogen or trifluoromethyl group according to Craig's plot. The activities against bacteria or fungi were insignificant. The presented compounds also inhibited photosynthetic electron transport in spinach chloroplasts and the IC50 values of the active compounds varied in the range from 16.4 to 487.0 µmol/L. The most active substances were 2 (R=3-CF3), 3 (R=3,4-Cl) and 11 (R=4-CF3). A linear dependence between lipophilicity and herbicidal activity was observed.


Assuntos
Antituberculosos/farmacologia , Nitrilas/farmacologia , Pirazinas/farmacologia , Antituberculosos/síntese química , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Halogenação , Herbicidas/síntese química , Herbicidas/farmacologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Micro-Ondas , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrilas/síntese química , Fotossíntese/efeitos dos fármacos , Pirazinas/síntese química , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo
13.
Molecules ; 19(7): 9318-38, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995919

RESUMO

A series of 18 N-alkyl substituted 3-aminopyrazine-2-carboxamides was prepared in this work according to previously experimentally set and proven conditions using microwave assisted synthesis methodology. This approach for the aminodehalogenation reaction was chosen due to higher yields and shorter reaction times compared to organic reactions with conventional heating. Antimycobacterial, antibacterial, antifungal and photosynthetic electron transport (PET) inhibiting in vitro activities of these compounds were investigated. Experiments for the determination of lipophilicity were also performed. Only a small number of substances with alicyclic side chain showed activity against fungi which was the same or higher than standards and the biological efficacy of the compounds increased with rising lipophilicity. Nine pyrazinamide derivatives also inhibited PET in spinach chloroplasts and the IC50 values of these compounds varied in the range from 14.3 to 1590.0 µmol/L. The inhibitory activity was connected not only with the lipophilicity, but also with the presence of secondary amine fragment bounded to the pyrazine ring. Structure-activity relationships are discussed as well.


Assuntos
Antifúngicos/síntese química , Herbicidas/síntese química , Pirazinamida/análogos & derivados , Pirazinamida/síntese química , Antifúngicos/farmacologia , Antituberculosos/síntese química , Antituberculosos/farmacologia , Candida albicans/efeitos dos fármacos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Herbicidas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Micro-Ondas , Mycobacterium tuberculosis/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pirazinamida/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade
14.
RSC Med Chem ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39345716

RESUMO

A new series of potential flutamide-like antiandrogens has been designed and synthesized to treat prostate cancer. This new series results from our research, which has been aimed at discovering new compounds that can be used for androgen deprivation treatment. The antiandrogens were designed and synthesized by varying the acyl part, linker, and substitution of the benzene ring in the 4-nitro-3-trifluoromethylanilide scaffold of non-steroidal androgens. In addition, the characteristic feature of the nitro group was replaced by a boronic acid functionality. Compound 9a was found to be more effective against LAPC-4 than the standard antiandrogens flutamide, hydroxyflutamide, and bicalutamide. Moreover, it exhibited lower toxicity against the non-cancerous cell line HK-2. The initial in silico study did not show evidence of covalent bonding to the androgen receptor, which was confirmed by an NMR binding experiment with arginine methyl ester. The structure-activity relationships discovered in this study could provide directions for further research on non-steroidal antiandrogens.

15.
Bioorg Med Chem Lett ; 23(2): 476-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23237840

RESUMO

A series of 19 new compounds related to pyrazinamide were synthesized, characterized with analytical data and screened for in vitro whole cell antimycobacterial activity against Mycobacterium tuberculosis H37Rv, Mycobacterium kansasii and two types of Mycobacterium avium. The series consisted of 3-(benzylamino)-5-cyanopyrazine-2-carboxamides and 3-(benzylamino)pyrazine-2,5-dicarbonitriles with various substituents on the phenyl ring. RP-HPLC method was used to determine the lipophilicity of the prepared compounds. Nine compounds exerted similar or better activity against Mycobacterium tuberculosis compared to pyrazinamide (MIC=6.25-12.5 µg/mL). 3-(Benzylamino)pyrazine-2,5-dicarbonitrile inhibited all of the tested mycobacterial strains with MIC within the range 12.5-25 µg/mL. Although not the most active, 4-NH(2) substituted compounds possessed the lowest in vitro cytotoxicity (hepatotoxicity), leading to selectivity index SI=5.5 and SI >21.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Benzilaminas/química , Mycobacterium/efeitos dos fármacos , Pirazinamida/síntese química , Pirazinamida/farmacologia , Células Cultivadas , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular
16.
Bioorg Med Chem Lett ; 23(12): 3589-91, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23659859

RESUMO

To develop new potential antimycobacterial drugs, a series of pyrazinamide derivatives was designed, synthesized and tested for their ability to inhibit the growth of selected mycobacterial strains (Mycobacterium tuberculosis H37Rv, Mycobacterium kansasii and two strains of Mycobacterium avium). This Letter is focused on binuclear pyrazinamide analogues containing the -CONH-CH2- bridge, namely on N-benzyl-5-chloropyrazine-2-carboxamides with various substituents on the phenyl ring and their comparison with some analogously substituted 5-chloro-N-phenylpyrazine-2-carboxamides. Compounds from the N-benzyl series exerted lower antimycobacterial activity against M. tuberculosis H37Rv then corresponding anilides, however comparable with pyrazinamide (12.5-25 µg/mL). Remarkably, 5-chloro-N-(4-methylbenzyl)pyrazine-2-carboxamide (8, MIC=3.13 µg/mL) and 5-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (1, MIC=6.25 µg/mL) were active against M. kansasii, which is naturally unsusceptible to PZA. Basic structure-activity relationships are presented.


Assuntos
Amidas/síntese química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antituberculosos/síntese química , Pirazinas/síntese química , Pirazinas/farmacologia , Amidas/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
17.
Molecules ; 18(12): 14807-25, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24317522

RESUMO

5-Chloropyrazinamide (5-Cl-PZA) is an inhibitor of mycobacterial fatty acid synthase I with a broad spectrum of antimycobacterial activity in vitro. Some N-phenylpyrazine-2-carboxamides with different substituents on both the pyrazine and phenyl core possess significant in vitro activity against Mycobacterium tuberculosis. To test the activity of structures combining both the 5-Cl-PZA and anilide motifs a series of thirty 5-chloro-N-phenylpyrazine-2-carboxamides with various substituents R on the phenyl ring were synthesized and screened against M. tuberculosis H37Rv, M. kansasii and two strains of M. avium. Most of the compounds exerted activity against M. tuberculosis H37Rv in the range of MIC = 1.56-6.25 µg/mL and only three derivatives were inactive. The phenyl part of the molecule tolerated many different substituents while maintaining the activity. In vitro cytotoxicity was decreased in compounds with hydroxyl substituents, preferably combined with other hydrophilic substituents. 5-Chloro-N-(5-chloro-2-hydroxyphenyl)pyrazine-2-carboxamide (21) inhibited all of the tested strains (MIC = 1.56 µg/mL for M. tuberculosis; 12.5 µg/mL for other strains). 4-(5-Chloropyrazine-2-carboxamido)-2-hydroxybenzoic acid (30) preserved good activity (MIC = 3.13 µg/mL M. tuberculosis) and was rated as non-toxic in two in vitro models (Chinese hamster ovary and renal cell adenocarcinoma cell lines; SI = 47 and 35, respectively).


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Mycobacterium/efeitos dos fármacos , Pirazinamida/análogos & derivados , Animais , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antituberculosos/química , Antituberculosos/toxicidade , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Pirazinamida/síntese química , Pirazinamida/química , Pirazinamida/farmacologia , Pirazinamida/toxicidade
18.
Parasitology ; 139(6): 809-18, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22309895

RESUMO

The drug-metabolizing enzymes of some helminths can deactivate anthelmintics and therefore partially protect helminths against these drugs' toxic effect. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (albendazole, flubendazole, mebendazole) in the rat tapeworm Hymenolepis diminuta, a species often used as a model tapeworm. In vitro and ex vivo experiments were performed. Metabolites of the anthelmintics were detected and identified by HPLC with spectrofluorometric or mass-spectrometric detection. The enzymes of H. diminuta are able to reduce the carbonyl group of flubendazole, mebendazole and several other xenobiotics. Although the activity of a number of oxidation enzymes was determined, no oxidative metabolites of albendazole were detected. Regarding conjugation enzymes, a high activity of glutathione S-transferase was observed. A methyl derivative of reduced flubendazole was the only conjugation metabolite identified in ex vivo incubations of H. diminuta with anthelmintics. The results revealed that H. diminuta metabolized flubendazole and mebendazole, but not albendazole. The biotransformation pathways found in H. diminuta differ from those described in Moniezia expanza and suggest the interspecies differences in drug metabolism not only among classes of helminths, but even among tapeworms.


Assuntos
Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Himenolepíase/parasitologia , Hymenolepis diminuta/efeitos dos fármacos , Hymenolepis diminuta/enzimologia , Albendazol/metabolismo , Albendazol/farmacologia , Animais , Anti-Helmínticos/química , Biotransformação , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Glutationa Transferase/metabolismo , Espectrometria de Massas , Mebendazol/análogos & derivados , Mebendazol/química , Mebendazol/metabolismo , Mebendazol/farmacologia , Oxirredução , Ratos
19.
Parasitology ; 139(10): 1309-16, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717022

RESUMO

Haemonchus contortus is one of the most pathogenic parasites of small ruminants (e.g. sheep and goat). The treatment of haemonchosis is complicated because of recurrent resistance of H. contortus to common anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug flubendazole (FLU) and the activities of selected biotransformation enzymes towards model xenobiotics in 4 different strains of H. contortus: the ISE strain (susceptible to common anthelmintics), ISE-S (resistant to ivermectin), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (resistant to all common anthelmintics). H. contortus adults were collected from the abomasums from experimentally infected lambs. The in vitro as well as ex vivo experiments were performed and analysed using HPLC with spectrofluorimetric and mass-spectrometric detection. In all H. contortus strains, 4 different FLU metabolites were detected: FLU with a reduced carbonyl group (FLU-R), glucose conjugate of FLU-R and 2 glucose conjugates of FLU. In the resistant strains, the ex vivo formation of all FLU metabolites was significantly higher than in the susceptible ISE strain. The multi-resistant WR strain formed approximately 5 times more conjugates of FLU than the susceptible ISE strain. The in vitro data also showed significant differences in FLU metabolism, in the activities of UDP-glucosyltransferase and several carbonyl-reducing enzymes between the susceptible and resistant H. contortus strains. The altered activities of certain detoxifying enzymes might protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites.


Assuntos
Anti-Helmínticos/metabolismo , Anti-Helmínticos/farmacologia , Haemonchus/efeitos dos fármacos , Haemonchus/enzimologia , Mebendazol/análogos & derivados , Animais , Resistência a Medicamentos/fisiologia , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/metabolismo , Mebendazol/metabolismo , Mebendazol/farmacologia , Ovinos , Doenças dos Ovinos/parasitologia
20.
Molecules ; 17(11): 13183-98, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23132136

RESUMO

A series of twelve amides was synthesized via aminolysis of substituted pyrazinecarboxylic acid chlorides with substituted benzylamines. Compounds were characterized with analytical data and assayed in vitro for their antimycobacterial, antifungal, antibacterial and photosynthesis-inhibiting activity. 5-tert-Butyl-6-chloro-N-(4-methoxybenzyl)pyrazine-2-carboxamide (12) has shown the highest antimycobacterial activity against Mycobacterium tuberculosis (MIC = 6.25 µg/mL), as well as against other mycobacterial strains. The highest antifungal activity against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 5-chloro-N-(3-trifluoromethylbenzyl)-pyrazine-2-carboxamide (2, MIC = 15.62 µmol/L). None of the studied compounds exhibited any activity against the tested bacterial strains. Except for 5-tert-butyl-6-chloro-N-benzylpyrazine-2-carboxamide (9, IC(50) = 7.4 µmol/L) and 5-tert-butyl-6-chloro-N-(4-chlorobenzyl)pyrazine-2-carboxamide (11, IC(50) = 13.4 µmol/L), only moderate or weak photosynthesis-inhibiting activity in spinach chloroplasts (Spinacia oleracea L.) was detected.


Assuntos
Amidas/síntese química , Antibióticos Antituberculose/síntese química , Antifúngicos/síntese química , Pirazinas/síntese química , Amidas/farmacologia , Antibióticos Antituberculose/farmacologia , Antifúngicos/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Herbicidas/síntese química , Herbicidas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Pirazinas/farmacologia , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Trichophyton/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA