Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Neuromodulation ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39177522

RESUMO

OBJECTIVES: Transcranial ultrasound neuromodulation (TUSN) is a noninvasive and spatially specific therapy that promises to deliver treatments tailored to the specific needs of individuals. To fulfill this promise, each treatment must be modified to adequately correct for variation across individual skulls and neural anatomy. This study examines the use of ultrasound-induced voltage potentials (measured with electroencephalography [EEG]) to guide TUSN therapies. MATERIALS AND METHODS: We measured EEG responses in two awake nonhuman primates during sonication of 12 targets surrounding two deep brain nuclei, the left and right lateral geniculate nucleus. RESULTS: We report reliable ultrasound evoked potentials measured with EEG after the deep brain ultrasonic modulation in nonhuman primates. Robust responses are observed after just ten repetitions of the ultrasonic stimuli. Moreover, these potentials are only evoked for specific deep brain targets. Furthermore, a behavioral study in one subject shows a direct correspondence between the target with maximal EEG response and ultrasound-based modulation of visual choice behavior. Thus, this study provides evidence for the feasibility of EEG-based guidance for ultrasound neuromodulation therapies.

2.
Proc Natl Acad Sci U S A ; 114(32): 8499-8504, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739920

RESUMO

How individuals make decisions has been a matter of long-standing debate among economists and researchers in the life sciences. In economics, subjects are viewed as optimal decision makers who maximize their overall reward income. This framework has been widely influential, but requires a complete knowledge of the reward contingencies associated with a given choice situation. Psychologists and ecologists have observed that individuals tend to use a simpler "matching" strategy, distributing their behavior in proportion to relative rewards associated with their options. This article demonstrates that the two dominant frameworks of choice behavior are linked through the law of diminishing returns. The relatively simple matching can in fact provide maximal reward when the rewards associated with decision makers' options saturate with the invested effort. Such saturating relationships between reward and effort are hallmarks of the law of diminishing returns. Given the prevalence of diminishing returns in nature and social settings, this finding can explain why humans and animals so commonly behave according to the matching law. The article underscores the importance of the law of diminishing returns in choice behavior.


Assuntos
Comportamento de Escolha/ética , Tomada de Decisões/ética , Simulação por Computador , Humanos , Aprendizagem , Modelos Econométricos , Modelos Econômicos , Recompensa
3.
J Neurosci ; 38(12): 3081-3091, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29463641

RESUMO

Focused ultrasound has been shown to stimulate excitable cells, but the biophysical mechanisms behind this phenomenon remain poorly understood. To provide additional insight, we devised a behavioral-genetic assay applied to the well-characterized nervous system of Caenorhabditis elegans nematodes. We found that pulsed ultrasound elicits robust reversal behavior in wild-type animals in a pressure-, duration-, and pulse protocol-dependent manner. Responses were preserved in mutants unable to sense thermal fluctuations and absent in mutants lacking neurons required for mechanosensation. Additionally, we found that the worm's response to ultrasound pulses rests on the expression of MEC-4, a DEG/ENaC/ASIC ion channel required for touch sensation. Consistent with prior studies of MEC-4-dependent currents in vivo, the worm's response was optimal for pulses repeated 300-1000 times per second. Based on these findings, we conclude that mechanical, rather than thermal, stimulation accounts for behavioral responses. Further, we propose that acoustic radiation force governs the response to ultrasound in a manner that depends on the touch receptor neurons and MEC-4-dependent ion channels. Our findings illuminate a complete pathway of ultrasound action, from the forces generated by propagating ultrasound to an activation of a specific ion channel. The findings further highlight the importance of optimizing ultrasound pulsing protocols when stimulating neurons via ion channels with mechanosensitive properties.SIGNIFICANCE STATEMENT How ultrasound influences neurons and other excitable cells has remained a mystery for decades. Although it is widely understood that ultrasound can heat tissues and induce mechanical strain, whether or not neuronal activation depends on heat, mechanical force, or both physical factors is not known. We harnessed Caenorhabditis elegans nematodes and their extraordinary sensitivity to thermal and mechanical stimuli to address this question. Whereas thermosensory mutants respond to ultrasound similar to wild-type animals, mechanosensory mutants were insensitive to ultrasound stimulation. Additionally, stimulus parameters that accentuate mechanical effects were more effective than those producing more heat. These findings highlight a mechanical nature of the effect of ultrasound on neurons and suggest specific ways to optimize stimulation protocols in specific tissues.


Assuntos
Comportamento Animal/efeitos da radiação , Proteínas de Caenorhabditis elegans/efeitos da radiação , Proteínas de Membrana/efeitos da radiação , Neurônios/efeitos da radiação , Ondas Ultrassônicas , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Membrana/biossíntese , Neurônios/metabolismo , Tato/efeitos da radiação
4.
Cereb Cortex ; 27(1): 447-459, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26491065

RESUMO

Behavior is guided by previous experience. Good, positive outcomes drive a repetition of a previous behavior or choice, whereas poor or bad outcomes lead to an avoidance. How these basic drives are implemented by the brain has been of primary interest to psychology and neuroscience. We engaged animals in a choice task in which the size of a reward outcome strongly governed the animals' subsequent decision whether to repeat or switch the previous choice. We recorded the discharge activity of neurons implicated in reward-based choice in 2 regions of parietal cortex. We found that the tendency to retain previous choice following a large (small) reward was paralleled by a marked decrease (increase) in the activity of parietal neurons. This neural effect is independent of, and of sign opposite to, value-based modulations reported in parietal cortex previously. This effect shares the same basic properties with signals previously reported in the limbic system that detect the size of the recently obtained reward to mediate proper repeat-switch decisions. We conclude that the size of the obtained reward is a decision variable that guides the decision between retaining a choice or switching, and neurons in parietal cortex strongly respond to this novel decision variable.


Assuntos
Comportamento de Escolha/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Animais , Comportamento Animal/fisiologia , Macaca mulatta , Masculino , Recompensa
5.
Proc Natl Acad Sci U S A ; 112(16): E2067-72, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25759438

RESUMO

Parietal cortex is central to spatial cognition. Lesions of parietal cortex often lead to hemispatial neglect, an impairment of choices of targets in space. It has been unclear whether parietal cortex implements target choice at the general cognitive level, or whether parietal cortex subserves the choice of targets of particular actions. To address this question, monkeys engaged in choice tasks in two distinct action contexts--eye movements and arm movements. We placed focused reversible lesions into specific parietal circuits using the GABAA receptor agonist muscimol and validated the lesion placement using MRI. We found that lesions on the lateral bank of the intraparietal sulcus [lateral intraparietal area (LIP)] specifically biased choices made using eye movements, whereas lesions on the medial bank of the intraparietal sulcus [parietal reach region (PRR)] specifically biased choices made using arm movements. This double dissociation suggests that target choice is implemented in dedicated parietal circuits in the context of specific actions. This finding emphasizes a motor role of parietal cortex in spatial choice making and contributes to our understanding of hemispatial neglect.


Assuntos
Atividade Motora/fisiologia , Lobo Parietal/fisiopatologia , Transtornos da Percepção/fisiopatologia , Animais , Comportamento de Escolha , Modelos Animais de Doenças , Haplorrinos , Modelos Logísticos , Masculino , Movimentos Sacádicos/fisiologia , Análise e Desempenho de Tarefas
6.
Neurosurg Focus ; 44(2): E14, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29385924

RESUMO

The understanding of brain function and the capacity to treat neurological and psychiatric disorders rest on the ability to intervene in neuronal activity in specific brain circuits. Current methods of neuromodulation incur a tradeoff between spatial focus and the level of invasiveness. Transcranial focused ultrasound (FUS) is emerging as a neuromodulation approach that combines noninvasiveness with focus that can be relatively sharp even in regions deep in the brain. This may enable studies of the causal role of specific brain regions in specific behaviors and behavioral disorders. In addition to causal brain mapping, the spatial focus of FUS opens new avenues for treatments of neurological and psychiatric conditions. This review introduces existing and emerging FUS applications in neuromodulation, discusses the mechanisms of FUS effects on cellular excitability, considers the effects of specific stimulation parameters, and lays out the directions for future work.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Mentais/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico por imagem , Ultrassonografia de Intervenção/métodos , Humanos , Transtornos Mentais/terapia , Doenças do Sistema Nervoso/terapia
7.
J Neurosci ; 35(12): 4869-81, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810518

RESUMO

Recordings in the lateral intraparietal area (LIP) reveal that parietal cortex encodes variables related to spatial decision-making, the selection of desirable targets in space. It has been unclear whether parietal cortex is involved in spatial decision-making in general, or whether specific parietal compartments subserve decisions made using specific actions. To test this, we engaged monkeys (Macaca mulatta) in a reward-based decision task in which they selected a target based on its desirability. The animals' choice behavior in this task followed the molar matching law, and in each trial was governed by the desirability of the choice targets. Critically, animals were instructed to make the choice using one of two actions: eye movements (saccades) and arm movements (reaches). We recorded the discharge activity of neurons in area LIP and the parietal reach region (PRR) of the parietal cortex. In line with previous studies, we found that both LIP and PRR encode a reward-based decision variable, the target desirability. Crucially, the target desirability was encoded in LIP at least twice as strongly when choices were made using saccades compared with reaches. In contrast, PRR encoded target desirability only for reaches and not for saccades. These data suggest that decisions can evolve in dedicated parietal circuits in the context of specific actions. This finding supports the hypothesis of an intentional representation of developing decisions in parietal cortex. Furthermore, the close link between the cognitive (decision-related) and bodily (action-related) processes presents a neural contribution to the theories of embodied cognition.


Assuntos
Tomada de Decisões/fisiologia , Neurônios/fisiologia , Lobo Parietal/fisiologia , Recompensa , Potenciais de Ação/fisiologia , Animais , Braço/fisiologia , Movimentos Oculares , Macaca mulatta , Masculino , Estimulação Luminosa
8.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464109

RESUMO

How humans and animals distribute their behavior across choice options has been of key interest to economics, psychology, ecology, and related fields. Neoclassical and behavioral economics have provided prescriptions for how decision-makers can maximize their reward or utility, but these formalisms are used by decision-makers rarely. Instead, individuals allocate their behavior in proportion to the worth of their options, a phenomenon captured by the generalized matching law. Why biological decision-makers adopt this strategy has been unclear. To provide insight into this issue, this article evaluates the performance of matching across a broad spectrum of decision situations, using simulations. Matching is found to attain a high or near-optimal gain, and the strategy achieves this level of performance following a single evaluation of the decision options. Thus, matching provides highly efficient decisions across a wide range of choice environments. This result offers a quantitative explanation for the broad adoption of matching by biological decision-makers.

9.
Res Sq ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410437

RESUMO

How humans and animals distribute their behavior across choice options has been of key interest to economics, psychology, ecology, and related fields. Neoclassical and behavioral economics have provided prescriptions for how decision-makers can maximize their reward or utility, but these formalisms are used by decision-makers rarely. Instead, individuals allocate their behavior in proportion to the worth of their options, a phenomenon captured by the generalized matching law. Why biological decision-makers adopt this strategy has been unclear. To provide insight into this issue, this article evaluates the performance of matching across a broad spectrum of decision situations, using simulations. Matching is found to attain a high or near-optimal gain, and the strategy achieves this level of performance following a single evaluation of the decision options. Thus, matching provides highly efficient decisions across a wide range of choice environments. This result offers a quantitative explanation for the broad adoption of matching by biological decision-makers.

10.
bioRxiv ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38798638

RESUMO

Decision-making is a deliberate process that seemingly evolves under our own volition. Yet, research on embodied cognition has demonstrated that higher-order cognitive processes may be influenced, in unexpected ways, by properties of motor and sensory systems. Here we tested whether and how simple decisions are influenced by handedness and by asymmetries in the auditory system. Right- and left-handed participants performed an auditory decision task. In the task, subjects decided whether they heard more click sounds in the right ear or in the left ear, and pressed a key with either their right or left index finger, according to an instructed stimulus-key assignment (congruent or reversed). On some trials, there was no stimulus and subjects could choose either of the responses freely. When subjects chose freely, their choices were substantially governed by their handedness: Left-handed subjects were significantly biased to make the leftward choice, whereas right-handed subjects showed a substantial rightward bias. When the choice was governed by the sensory stimulus, subjects showed a rightward choice bias under the congruent key assignment, but this effect reversed to a leftward choice bias under the reversed key assignment. This result indicates a bias towards deciding that there were more clicks presented to the right ear. Together, our findings demonstrate that human choices can be considerably influenced by properties of motor and sensory systems.

11.
Front Hum Neurosci ; 18: 1412921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979100

RESUMO

Transcranial focused ultrasound enables precise and non-invasive manipulations of deep brain circuits in humans, promising to provide safe and effective treatments of various neurological and mental health conditions. Ultrasound focused to deep brain targets can be used to modulate neural activity directly or localize the release of psychoactive drugs. However, these applications have been impeded by a key barrier-the human skull, which attenuates ultrasound strongly and unpredictably. To address this issue, we have developed an ultrasound-based approach that directly measures and compensates for the ultrasound attenuation by the skull. No additional skull imaging, simulations, assumptions, or free parameters are necessary; the method measures the attenuation directly by emitting a pulse of ultrasound from an array on one side of the head and measuring with an array on the opposite side. Here, we apply this emerging method to two primary future uses-neuromodulation and local drug release. Specifically, we show that the correction enables effective stimulation of peripheral nerves and effective release of propofol from nanoparticle carriers through an ex vivo human skull. Neither application was effective without the correction. Moreover, the effects show the expected dose-response relationship and targeting specificity. This article highlights the need for precise control of ultrasound intensity within the skull and provides a direct and practical approach for addressing this lingering barrier.

12.
IEEE Trans Biomed Eng ; 71(2): 660-668, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37695955

RESUMO

Low-intensity focused ultrasound provides the means to noninvasively stimulate or release drugs in specified deep brain targets. However, successful clinical translations require hardware that maximizes acoustic transmission through the skull, enables flexible electronic steering, and provides accurate and reproducible targeting while minimizing the use of MRI. We have developed a device that addresses these practical requirements. The device delivers ultrasound through the temporal and parietal skull windows, which minimize the attenuation and distortions of the ultrasound by the skull. The device consists of 252 independently controlled elements, which provides the ability to modulate multiple deep brain targets at a high spatiotemporal resolution, without the need to move the device or the subject. And finally, the device uses a mechanical registration method that enables accurate deep brain targeting both inside and outside of the MRI. Using this method, a single MRI scan is necessary for accurate targeting; repeated subsequent treatments can be performed reproducibly in an MRI-free manner. We validated these functions by transiently modulating specific deep brain regions in two patients with treatment-resistant depression.


Assuntos
Encéfalo , Crânio , Humanos , Encéfalo/diagnóstico por imagem , Ultrassonografia , Crânio/diagnóstico por imagem , Acústica , Cabeça
13.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37873134

RESUMO

Many areas of science and medicine would benefit from selective release of drugs in specific regions of interest. Nanoparticle drug carriers activated by focused ultrasound-remotely applied, depth-penetrating energy-may provide such selective interventions. Here, we developed stable, ultrasound-responsive nanoparticles that can be used to release drugs effectively and safely in non-human primates. The nanoparticles were used to release propofol in deep brain visual regions. The release reversibly modulated the subjects' visual choice behavior and was specific to the targeted region and to the released drug. Gadolinium-enhanced MRI imaging suggested an intact blood-brain barrier. Blood draws showed normal clinical chemistry and hematology. In summary, this study provides a safe and effective approach to release drugs on demand in selected deep brain regions at levels sufficient to modulate behavior.

14.
J Neural Eng ; 21(1)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335553

RESUMO

Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively modulate confined regions deep inside the human brain, which could provide a new tool for causal interrogation of circuit function in humans. However, it has been unclear whether the approach is potent enough to modulate behavior.Approach: To test this, we applied low-intensity ultrasound to a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity ultrasound, repeated less than 30 times over a period of 90 min, nearly abolished tremor (98% and 97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished following the stimulation, suggesting that the stimulation was safe with no harmful long-term consequences detected.Significance: This result demonstrates that low-intensity focused ultrasound can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor/terapia , Tálamo/diagnóstico por imagem , Encéfalo , Resultado do Tratamento
15.
J Control Release ; 369: 775-785, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604386

RESUMO

Many areas of science and medicine would benefit from selective release of drugs in specific regions. Nanoparticle drug carriers activated by focused ultrasound-remotely applied, depth-penetrating energy-may provide such selective interventions. Here, we developed stable, ultrasound-responsive nanoparticles that can be used to release drugs effectively and safely in non-human primates. The nanoparticles were used to release propofol in deep brain visual regions. The release reversibly modulated the subjects' visual choice behavior and was specific to the targeted region and to the released drug. Gadolinium-enhanced MR imaging suggested an intact blood-brain barrier. Blood draws showed normal clinical chemistry and hematology. In summary, this study provides a safe and effective approach to release drugs on demand in selected deep brain regions at levels sufficient to modulate behavior.


Assuntos
Encéfalo , Preparações de Ação Retardada , Propofol , Animais , Propofol/farmacocinética , Propofol/administração & dosagem , Propofol/sangue , Propofol/química , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Nanopartículas/administração & dosagem , Masculino , Liberação Controlada de Fármacos , Macaca mulatta , Portadores de Fármacos/química , Imageamento por Ressonância Magnética , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Gadolínio/administração & dosagem , Gadolínio/química , Gadolínio/farmacocinética
16.
Front Mol Biosci ; 11: 1408767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962281

RESUMO

Targeted delivery of medication has the promise of increasing the effectiveness and safety of current systemic drug treatments. Focused ultrasound is emerging as noninvasive and practical energy for targeted drug release. However, it has yet to be determined which nanocarriers and ultrasound parameters can provide both effective and safe release. Perfluorocarbon nanodroplets have the potential to achieve these goals, but current approaches have either been effective or safe, but not both. We found that nanocarriers with highly stable perfluorocarbon cores mediate effective drug release so long as they are activated by ultrasound of sufficiently low frequency. We demonstrate a favorable safety profile of this formulation in a non-human primate. To facilitate translation of this approach into humans, we provide an optimized method for manufacturing the nanocarriers. This study provides a recipe and release parameters for effective and safe drug release from nanoparticle carriers in the body part specified by focused ultrasonic waves.

17.
Pain ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39073370

RESUMO

ABSTRACT: Direct interventions into deep brain circuits constitute promising treatment modalities for chronic pain. Cingulotomy and deep brain stimulation targeting the anterior cingulate cortex have shown notable improvements in the unpleasantness of pain, but these interventions require brain surgeries. In this study, we have developed an approach that can modulate this deep brain affective hub entirely noninvasively, using low-intensity transcranial-focused ultrasound. Twenty patients with chronic pain received two 40-minute active or sham stimulation protocols and were monitored for one week in a randomized crossover trial. Sixty percent of subjects experienced a clinically meaningful reduction of pain on day 1 and on day 7 following the active stimulation, while sham stimulation provided such benefits only to 15% and 20% of subjects, respectively. On average, active stimulation reduced pain by 60.0% immediately following the intervention and by 43.0% and 33.0% on days 1 and 7 following the intervention. The corresponding sham levels were 14.4%, 12.3%, and 6.6%. The stimulation was well tolerated, and no adverse events were detected. Side effects were generally mild and resolved within 24 hours. Together, the direct, ultrasonic stimulation of the anterior cingulate cortex offers rapid, clinically meaningful, and durable improvements in pain severity.

18.
Nat Commun ; 15(1): 4308, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773117

RESUMO

Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.


Assuntos
Encéfalo , Tomada de Decisões , Lobo Parietal , Humanos , Tomada de Decisões/fisiologia , Masculino , Feminino , Adulto , Encéfalo/fisiologia , Lobo Parietal/fisiologia , Comportamento de Escolha/fisiologia , Adulto Jovem , Incerteza
19.
Neuroimage ; 83: 795-808, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23872495

RESUMO

We often make decisions based on sensory evidence that is accumulated over a period of time. How the evidence for such decisions is represented in the brain and how such a neural representation is used to guide a subsequent action are questions of considerable interest to decision sciences. The neural correlates of developing perceptual decisions have been thoroughly investigated in the oculomotor system of macaques who communicated their decisions using an eye movement. It has been found that the evidence informing a decision to make an eye movement is in part accumulated within the same oculomotor circuits that signal the upcoming eye movement. Recent evidence suggests that the somatomotor system may exhibit an analogous property for choices made using a hand movement. To investigate this possibility, we engaged humans in a decision task in which they integrated discrete quanta of sensory information over a period of time and signaled their decision using a hand movement or an eye movement. The discrete form of the sensory evidence allowed us to infer the decision variable on which subjects base their decision on each trial and to assess the neural processes related to each quantum of the incoming decision evidence. We found that a low-frequency electrophysiological signal recorded over centroparietal regions strongly encodes the decision variable inferred in this task, and that it does so specifically for hand movement choices. The signal ramps up with a rate that is proportional to the decision variable, remains graded by the decision variable throughout the delay period, reaches a common peak shortly before a hand movement, and falls off shortly after the hand movement. Furthermore, the signal encodes the polarity of each evidence quantum, with a short latency, and retains the response level over time. Thus, this neural signal shows properties of evidence accumulation. These findings suggest that the decision-related effects observed in the oculomotor system of the monkey during eye movement choices may share the same basic properties with the decision-related effects in the somatomotor system of humans during hand movement choices.


Assuntos
Encéfalo/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Adulto , Eletroencefalografia , Movimentos Oculares/fisiologia , Feminino , Mãos , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
20.
J Neural Eng ; 20(3)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236172

RESUMO

Objective:The ability to generate electric fields in specific targets remotely would transform manipulations of processes that rest on electrical signaling.Approach:This article shows that focal electric fields are generated from distance by combining two orthogonal, remotely applied energies-magnetic and focused ultrasonic fields. The effect derives from the Lorentz force equation applied to magnetic and ultrasonic fields.Main results:We elicited this effect using standard hardware and confirmed that the generated electric fields align with the Lorentz equation. The effect significantly and safely modulated human peripheral nerves and deep brain regions of non-human primates.Significance:This approach opens a new set of applications in which electric fields are generated at high spatiotemporal resolution within intact biological tissues or materials, thus circumventing the limitations of traditional electrode-based procedures.


Assuntos
Encéfalo , Ultrassom , Animais , Encéfalo/fisiologia , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA