Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Plant Dis ; 107(12): 3792-3800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37189042

RESUMO

Two phloem-limited pathogens, 'Candidatus Arsenophonus phytopathogenicus' and 'Candidatus Phytoplasma solani', threaten sugar beet production in France, Switzerland, and Germany. Previous studies of these pathogens in Germany had focused on its western and southern regions, leaving a knowledge gap about eastern Germany. Despite their importance, this study is the first to investigate phytoplasmas in sugar beet in Saxony-Anhalt, Germany. A phytoplasma strain related to 'Ca. P. solani' is found predominant in Saxony-Anhalt, unlike in France, where 'Ca. P. solani' has a minor role compared with 'Ca. A. phytopathogenicus'. The phytoplasma strain infecting sugar beet in Saxony-Anhalt was classified into a new subgroup designated as 16SrXII-P. The multilocus sequence analysis (MLSA) of nonribosomal genes of the novel phytoplasma strain showed that it is significantly different from the reference and all previously reported 'Ca. P. solani' strains including the strain from western Germany. Analyses of sugar beet samples from previous years confirmed the presence of the 16SrXII-P strain in sugar beet as early as 2020 and also in Bavaria in southern Germany. Based on 16S rDNA analysis, 'Ca. A. phytopathogenicus' in Saxony-Anhalt is identical to strains in sugar beet in other parts of Germany and France, as well as to a strain in potato from Germany. The presence and prevalence of two phytoplasmas in sugar beet in Germany suggest that more attention should be directed toward understanding phytoplasma infection in sugar beet in this country.


Assuntos
Beta vulgaris , Phytoplasma , Phytoplasma/genética , Prevalência , Doenças das Plantas , Açúcares
2.
Artigo em Inglês | MEDLINE | ID: mdl-35471141

RESUMO

The genus 'Candidatus Phytoplasma' was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus 'Ca. Phytoplasma', the proposed guidelines were revised and clarified to accommodate those 'Ca. Phytoplasma' species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same 'Ca. Phytoplasma' species should be considered related strains to that 'Ca. Phytoplasma' species. The guidelines herein, keep the original published reference strains. However, to improve 'Ca. Phytoplasma' species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of 'Ca. Phytoplasma' species and alternative reference strains described are reported. For new 'Ca. Phytoplasma' species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published 'Candidatus Phytoplasma' species, including 'Ca. P. cocostanzaniae' and 'Ca. P. palmae' described in this manuscript.


Assuntos
Phytoplasma , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , Phytoplasma/genética , Doenças das Plantas/microbiologia , Plantas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
3.
Plant Dis ; 105(2): 255-263, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33021915

RESUMO

Rubbery taproot disease (RTD) of sugar beet was observed in Serbia for the first time in the 1960s. The disease was already described in neighboring Bulgaria and Romania at the time but it was associated with abiotic factors. In this study on RTD of sugar beet in its main growing area of Serbia, we provide evidence of the association between 'Candidatus Phytoplasma solani' (stolbur phytoplasma) infection and the occurrence of typical RTD symptomatology. 'Ca. P. solani' was identified by PCR and the sequence analyses of 16S ribosomal RNA, tuf, secY, and stamp genes. In contrast, the causative agent of the syndrome "basses richesses" of sugar beet-namely, 'Ca. Arsenophonus phytopathogenicus'-was not detected. Sequence analysis of the stolbur strain's tuf gene confirmed a previously reported and a new, distinct tuf stolbur genotype (named 'tuf d') that is prevalent in sugar beet. The sequence signatures of the tuf gene as well as the one of stamp both correlate with the epidemiological cycle and reservoir plant host. This study provides knowledge that, for the first time, enables the differentiation of stolbur strains associated with RTD of sugar beet from closely related strains, thereby providing necessary information for further epidemiological work seeking to identify insect vectors and reservoir plant hosts. The results of this study indicate that there are differences in hybrid susceptibility. Clarifying the etiology of RTD as a long-known and economically important disease is certainly the first step toward disease management in Serbia and neighboring countries.


Assuntos
Beta vulgaris , Phytoplasma , Filogenia , Phytoplasma/genética , Doenças das Plantas , Sérvia , Açúcares
4.
BMC Microbiol ; 20(1): 74, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234008

RESUMO

BACKGROUND: 'Candidatus Phytoplasma ulmi' is the agent associated with elm yellows and has been categorised in the European Union as a quarantine pathogen. For central and northern European countries, information on the occurrence and distribution of the pathogen and its impact on elms is scarce, so a survey of native elm trees has been conducted in Germany. RESULTS: About 6500 samples from Ulmus minor, Ulmus laevis and Ulmus glabra, were collected nationwide. Phytoplasma detection was performed by applying a universal 16Sr DNA-based quantitative PCR (qPCR) assay and a novel 'Ca. P. ulmi' specific qPCR assay targeting the 16S-23S spacer region. Both assays revealed that 28% of the samples were infected by 'Ca. P. ulmi', but infection rates of the elm species and regional incidences differed. The phytoplasma presence in the trees was not correlated to disease-specific symptoms. The survey identified a regional disparity of infection which was high in east, south and central Germany, whereas only a few infected sites were found in the western and northern parts of the country. Monitoring the seasonal titre of 'Ca. P. ulmi' in an infected tree by qPCR revealed a high colonisation in all parts of the tree throughout the year. CONCLUSIONS: 'Ca. P. ulmi' is widely present in elms in Germany. The rare occurrence of symptoms indicates either a high degree of tolerance in elm populations or a low virulence of pathogen strains enabling high infection rates in a long-living host.


Assuntos
Phytoplasma/classificação , Doenças das Plantas/estatística & dados numéricos , RNA Ribossômico 16S/genética , Ulmus/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Alemanha/epidemiologia , Incidência , Filogenia , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano
5.
Phytopathology ; 109(11): 1900-1907, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31369362

RESUMO

Floricolous downy mildews (Peronospora, oomycetes) are a small, monophyletic group of mostly inconspicuous plant pathogens that induce symptoms exclusively on flowers. Characterization of this group of pathogens, and information about their biology, is particularly sparse. The recurrent presence of a disease causing flower malformation which, in turn, leads to high production losses of the medicinal herb Matricaria chamomilla in Serbia has enabled continuous experiments focusing on the pathogen and its biology. Peronospora radii was identified as the causal agent of the disease, and morphologically and molecularly characterized. Diseased chamomile flowers showed severe malformations of the disc and ray florets, including phyllody and secondary inflorescence formation, followed by the onset of downy mildew. Phylogeny, based on internal transcribed spacer and cox2, indicates clustering of the Serbian P. radii with other P. radii from chamomile although, in cox2 analyses, they formed a separate subcluster. Evidence pointing to systemic infection was provided through histological and molecular analyses, with related experiments validating the impact of soilborne and blossom infections. This study provides new findings in the biology of P. radii on chamomile, thus enabling the reconstruction of this floricolous Peronospora species' life cycle.


Assuntos
Camomila , Peronospora , Camomila/microbiologia , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Fúngicos/genética , Peronospora/classificação , Peronospora/genética , Peronospora/fisiologia , Filogenia , Doenças das Plantas/microbiologia
6.
Nature ; 471(7336): 95-8, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368831

RESUMO

Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida. However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.


Assuntos
Anelídeos/classificação , Filogenia , Animais , Anelídeos/anatomia & histologia , Anelídeos/química , Etiquetas de Sequências Expressas , Genoma/genética , Genômica , Modelos Biológicos
7.
BMC Genomics ; 17(1): 918, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846794

RESUMO

BACKGROUND: Sulfate-reducing bacteria (SRB) are key players of the carbon- and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds. RESULTS: In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; ~91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) ß-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. CONCLUSIONS: A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members.


Assuntos
Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Genoma Bacteriano , Genômica , Metabolômica , Proteômica , Sulfatos/metabolismo , Anaerobiose , Biomarcadores , Cromossomos Bacterianos , Ordem dos Genes , Genômica/métodos , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Fases de Leitura Aberta , Oxirredução , Estresse Oxidativo , Proteoma , Proteômica/métodos
8.
BMC Microbiol ; 15: 148, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26223451

RESUMO

BACKGROUND: Almond witches'-broom (AlmWB), a devastating disease of almond, peach and nectarine in Lebanon, is associated with 'Candidatus Phytoplasma phoenicium'. In the present study, we generated a draft genome sequence of 'Ca. P. phoenicium' strain SA213, representative of phytoplasma strain populations from different host plants, and determined the genetic diversity among phytoplasma strain populations by phylogenetic analyses of 16S rRNA, groEL, tufB and inmp gene sequences. RESULTS: Sequence-based typing and phylogenetic analysis of the gene inmp, coding an integral membrane protein, distinguished AlmWB-associated phytoplasma strains originating from diverse host plants, whereas their 16S rRNA, tufB and groEL genes shared 100 % sequence identity. Moreover, dN/dS analysis indicated positive selection acting on inmp gene. Additionally, the analysis of 'Ca. P. phoenicium' draft genome revealed the presence of integral membrane proteins and effector-like proteins and potential candidates for interaction with hosts. One of the integral membrane proteins was predicted as BI-1, an inhibitor of apoptosis-promoting Bax factor. Bioinformatics analyses revealed the presence of putative BI-1 in draft and complete genomes of other 'Ca. Phytoplasma' species. CONCLUSION: The genetic diversity within 'Ca. P. phoenicium' strain populations in Lebanon suggested that AlmWB disease could be associated with phytoplasma strains derived from the adaptation of an original strain to diverse hosts. Moreover, the identification of a putative inhibitor of apoptosis-promoting Bax factor (BI-1) in 'Ca. P. phoenicium' draft genome and within genomes of other 'Ca. Phytoplasma' species suggested its potential role as a phytoplasma fitness-increasing factor by modification of the host-defense response.


Assuntos
Variação Genética , Genoma Bacteriano , Phytoplasma/classificação , Phytoplasma/isolamento & purificação , Doenças das Plantas/microbiologia , Prunus dulcis/microbiologia , Acholeplasmataceae , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Líbano , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , Prunus persica/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Plant Dis ; 99(11): 1578-1583, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30695967

RESUMO

'Candidatus Phytoplasma cynodontis' is widespread in bermudagrass and has only been found in monocotyledonous plants. Molecular studies carried out on strains collected in Italy, Serbia, and Albania enabled verification of molecular variability in the 16S ribosomal RNA (rRNA) gene. Based on restriction fragment length polymorphism and sequence analyses, the strains from Serbia were clearly differentiated from all others and assigned to a new ribosomal DNA (rDNA) subgroup designated as 16SrXIV-C. A system for amplification of fragments containing the 'Ca. P. cynodontis' groEL gene was developed to enable study of its variability in related strains belonging to different 16SrXIV subgroups. Despite the fact that the groEL gene exhibited a greater sequence variation than 16S rRNA, the phylogenetic tree based on groEL gene sequence analysis was highly congruent with the 16S rDNA-based tree. The groEL gene analyses supported differentiation of the Serbian strains and definition of the new subgroup 16SrXIV-C. Phylogenetic analyses of both genes confirmed distinct phylogenetic lineages for strains belonging to 16SrXIV subgroups. Furthermore, groEL is the only nonribosomal marker developed for characterization of 'Ca. P. cynodontis' thus far, and its application in molecular surveys should provide better insight into the relationships among these phytoplasmas and correlation between strain differentiation and their geographical distribution.

10.
Proteomics ; 14(16): 1882-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920314

RESUMO

Phytoplasmas are pathogenic bacteria within the class of Mollicutes, which are associated with more than 1000 plant diseases. In this study, we applied quantitative mass spectrometry to analyse affected pathways of the model plant tobacco (Nicotiana occidentalis) upon Candidatus Phytoplasma mali strain AT infection. Using tissue obtained from leaf midribs, 1466 plant-assigned proteins were identified. For 1019 of these proteins, we could reproducibly quantify the expression changes of infected versus noninfected plants, of which 157 proteins were up- and 173 proteins were downregulated. Differential expression took place in a number of pathways, among others strong downregulation of porphyrin and chlorophyll metabolism and upregulation of alpha-linolenic acid metabolism, which was consistent with observed increased levels of jasmonic acid, a key signal molecule of plant defence. Our data shed light on the molecular networks that are involved in defence of plants against phytoplasma infection and provide a resource for further studies.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/metabolismo , Nicotiana/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteômica/métodos , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Transdução de Sinais , Nicotiana/genética
11.
BMC Genomics ; 15: 931, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25344468

RESUMO

BACKGROUND: Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and 'Candidatus Phytoplasma'. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing. RESULTS: The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while the single molecule real time sequencing approach yielded one circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding genes and highlighted the absence of the F1FO-type Na+ ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins. CONCLUSIONS: The application of two state-of-the-art sequencing technologies highlights the potential of single molecule real time sequencing for complete genome determination. Comparative genome analyses revealed that the process of losing particular basic genetic features during genome reduction occurs in both genera, as indicated for several phytoplasma strains and at least A. oculi. The loss of the F1FO-type Na+ ATPase system may separate Acholeplasmataceae from other Mollicutes, while the loss of those genes encoding the chaperone GroEL/ES is not a rare exception in this bacterial class.


Assuntos
Acholeplasma/genética , Genômica , Evolução Molecular , Genoma Bacteriano/genética , Análise de Sequência , Especificidade da Espécie
12.
Proc Natl Acad Sci U S A ; 108(3): 1134-9, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21191098

RESUMO

Magnetotactic bacteria (MTB) are a phylogenetically diverse group which uses intracellular membrane-enclosed magnetite crystals called magnetosomes for navigation in their aquatic habitats. Although synthesis of these prokaryotic organelles is of broad interdisciplinary interest, its genetic analysis has been restricted to a few closely related members of the Proteobacteria, in which essential functions required for magnetosome formation are encoded within a large genomic magnetosome island. However, because of the lack of cultivated representatives from other phyla, it is unknown whether the evolutionary origin of magnetotaxis is monophyletic, and it has been questioned whether homologous mechanisms and structures are present in unrelated MTB. Here, we present the analysis of the uncultivated "Candidatus Magnetobacterium bavaricum" from the deep branching Nitrospira phylum by combining micromanipulation and whole genome amplification (WGA) with metagenomics. Target-specific sequences obtained by WGA of cells, which were magnetically collected and individually sorted from sediment samples, were used for PCR screening of metagenomic libraries. This led to the identification of a genomic cluster containing several putative magnetosome genes with homology to those in Proteobacteria. A variety of advanced electron microscopic imaging tools revealed a complex cell envelope and an intricate magnetosome architecture. The presence of magnetosome membranes as well as cytoskeletal magnetosome filaments suggests a similar mechanism of magnetosome formation in "Cand. M. bavaricum" as in Proteobacteria. Altogether, our findings suggest a monophyletic origin of magnetotaxis, and relevant genes were likely transferred horizontally between Proteobacteria and representatives of the Nitrospira phylum.


Assuntos
Bactérias/genética , Sequência Conservada/genética , Evolução Molecular , Transferência Genética Horizontal/genética , Magnetossomos/genética , Família Multigênica/genética , Filogenia , Bactérias/ultraestrutura , Sequência de Bases , Magnetossomos/ultraestrutura , Metagenômica/métodos , Micromanipulação , Microscopia Eletrônica , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie
13.
Proc Natl Acad Sci U S A ; 108(21): 8815-20, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555588

RESUMO

Filamentous cyanobacteria of the genus Lyngbya are important contributors to coral reef ecosystems, occasionally forming dominant cover and impacting the health of many other co-occurring organisms. Moreover, they are extraordinarily rich sources of bioactive secondary metabolites, with 35% of all reported cyanobacterial natural products deriving from this single pantropical genus. However, the true natural product potential and life strategies of Lyngbya strains are poorly understood because of phylogenetic ambiguity, lack of genomic information, and their close associations with heterotrophic bacteria and other cyanobacteria. To gauge the natural product potential of Lyngbya and gain insights into potential microbial interactions, we sequenced the genome of Lyngbya majuscula 3L, a Caribbean strain that produces the tubulin polymerization inhibitor curacin A and the molluscicide barbamide, using a combination of Sanger and 454 sequencing approaches. Whereas ∼ 293,000 nucleotides of the draft genome are putatively dedicated to secondary metabolism, this is far too few to encode a large suite of Lyngbya metabolites, suggesting Lyngbya metabolites are strain specific and may be useful in species delineation. Our analysis revealed a complex gene regulatory network, including a large number of sigma factors and other regulatory proteins, indicating an enhanced ability for environmental adaptation or microbial associations. Although Lyngbya species are reported to fix nitrogen, nitrogenase genes were not found in the genome or by PCR of genomic DNA. Subsequent growth experiments confirmed that L. majuscula 3L is unable to fix atmospheric nitrogen. These unanticipated life history characteristics challenge current views of the genus Lyngbya.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , Redes Reguladoras de Genes , Genoma Bacteriano/genética , Ciclopropanos , Ecologia , Genes Bacterianos/fisiologia , Biologia Marinha , Fixação de Nitrogênio/genética , Análise de Sequência de DNA , Tiazóis
14.
Microbiol Resour Announc ; : e0031824, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860808

RESUMO

The complete genome of "Candidatus Phytoplasma fraxini" AshY1, originating from Fraxinus americana in North America, was assembled using long reads from single-molecule real-time sequencing technology. The chromosome of 598 kb provides insights into the effector repertoire of a phytopathogenic bacterium from the 16SrVII phytoplasma group.

15.
Microorganisms ; 12(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38792845

RESUMO

Phytoplasmas are linked to diseases in hundreds of economically important crops, including carrots. In carrots, phytoplasmosis is associated with leaf chlorosis and necrosis, coupled with inhibited root system development, ultimately leading to significant economic losses. During a field study conducted in Baden-Württemberg (Germany), two strains of the provisional taxon 'Candidatus Phytoplasma asteris' were identified within a carrot plot. For further analysis, strains M8 and M33 underwent shotgun sequencing, utilising single-molecule-real-time (SMRT) long-read sequencing and sequencing-by-synthesis (SBS) paired-end short-read sequencing techniques. Hybrid assemblies resulted in complete de novo assemblies of two genomes harboring circular chromosomes and two plasmids. Analyses, including average nucleotide identity and sequence comparisons of established marker genes, confirmed the phylogenetic divergence of 'Ca. P. asteris' and a different assignment of strains to the 16S rRNA subgroup I-A for M33 and I-B for M8. These groups exhibited unique features, encompassing virulence factors and genes, associated with the mobilome. In contrast, pan-genome analysis revealed a highly conserved gene set related to metabolism across these strains. This analysis of the Aster Yellows (AY) group reaffirms the perception of phytoplasmas as bacteria that have undergone extensive genome reduction during their co-evolution with the host and an increase of genome size by mobilome.

16.
Mol Plant Microbe Interact ; 26(3): 367-76, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23387471

RESUMO

Previous examination revealed a correlation of phytopathogenic data of 'Candidatus Phytoplasma mali' strains and the DNA sequence variability of a type ATP00464 hflB gene fragment. To further investigate such a relationship, all distinct genes previously annotated as hflB in the genome of 'Ca. P. mali' strain AT were fully sequenced and analyzed from a number of representative mild, moderate, and severe strains. The re-annotation indicated that the sequences encode six AAA+ ATPases and six HflB proteases. Each of the nine distinct deduced AAA+ proteins that were examined formed a coherent phylogenetic cluster. However, within these groups, sequences of three ATPases and three proteases from mild and severe strains clustered distantly, according to their virulence. This grouping was supported by an association with virulence-related amino acid substitutions. Another finding was that full-length genes from ATPase AP11 could only be identified in mild and moderate strains. Prediction of the membrane topology indicated that the long ATPase- and protease-carrying C-terminal tails of approximately half of the AAA+ proteins are extracellular, putatively facing the environment of the sieve tubes. Thus, they may be involved in pathogen-host interactions and may compromise phloem function, a major effect of phytoplasma infection. All full-length genes examined appear transcriptionally active and all deduced peptides show the key positions indicative for protein function.


Assuntos
Adenosina Trifosfatases/genética , Malus/microbiologia , Peptídeo Hidrolases/genética , Phytoplasma/enzimologia , Phytoplasma/patogenicidade , Doenças das Plantas/microbiologia , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/genética , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno , Proteínas de Membrana , Peptídeo Hidrolases/química , Filogenia , Phytoplasma/genética , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Virulência
17.
Environ Microbiol ; 15(5): 1334-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23088741

RESUMO

Among the dominant deltaproteobacterial sulfate-reducing bacteria (SRB), members of the genus Desulfobacula are not only present in (hydrocarbon-rich) marine sediments, but occur also frequently in the anoxic water bodies encountered in marine upwelling areas. Here, we present the 5.2 Mbp genome of Desulfobacula toluolica Tol2, which is the first of an aromatic compound-degrading, marine SRB. The genome has apparently been shaped by viral attacks (e.g. CRISPRs) and its high plasticity is reflected by 163 detected genes related to transposases and integrases, a total of 494 paralogous genes and 24 group II introns. Prediction of the catabolic network of strain Tol2 was refined by differential proteome and metabolite analysis of substrate-adapted cells. Toluene and p-cresol are degraded by separate suites of specific enzymes for initial arylsuccinate formation via addition to fumarate (p-cresol-specific enzyme HbsA represents a new phylogenetic branch) as well as for subsequent modified ß-oxidation of arylsuccinates to the central intermediate benzoyl-CoA. Proteogenomic evidence suggests specific electron transfer (EtfAB) and membrane proteins to channel electrons from dehydrogenation of both arylsuccinates directly to the membrane redox pool. In contrast to the known anaerobic degradation pathways in other bacteria, strain Tol2 deaminates phenylalanine non-oxidatively to cinnamate by phenylalanine ammonia-lyase and subsequently forms phenylacetate (both metabolites identified in (13) C-labelling experiments). Benzoate degradation involves CoA activation, reductive dearomatization by a class II benzoyl-CoA reductase and hydrolytic ring cleavage as found in the obligate anaerobe Geobacter metallireducens GS-15. The catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2. Despite the genetic equipment for a TCA cycle, proteomic evidence supports complete oxidation of acetyl-CoA to CO2 via the Wood-Ljungdahl pathway. Strain Tol2 possesses transmembrane redox complexes similar to that of other Desulfobacteraceae members. The multiple heterodisulfide reductase-like proteins (more than described for Desulfobacterium autotrophicum HRM2) may constitute a multifaceted cytoplasmic electron transfer network.


Assuntos
Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Genoma Bacteriano , Proteoma , Deltaproteobacteria/classificação , Deltaproteobacteria/virologia , Metabolismo Energético/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Redes e Vias Metabólicas/genética , Metabolismo/genética , Filogenia , Transdução de Sinais , Estresse Fisiológico/genética
18.
Environ Microbiol ; 15(10): 2712-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23607663

RESUMO

Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.


Assuntos
Deltaproteobacteria/genética , Óxido Ferroso-Férrico , Genoma Bacteriano/genética , Ferro , Magnetossomos/genética , Sulfetos , Sequência Conservada , Deltaproteobacteria/classificação , Magnetismo , Dados de Sequência Molecular , Família Multigênica/genética , Filogenia
19.
Digestion ; 88(4): 243-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24335204

RESUMO

BACKGROUND: Clostridium difficile infections upon antibiotic disruption of the gut microbiota are potentially lethal. Fecal microbiota transplantation (FMT) is a promising treatment option for recurrent C. difficile-associated disease (CDAD). Here, we present a patient with recurrent CDAD that received FMT, leading to full recovery for what has now been 3 years. We performed metagenomic sequencing on stool samples to assess if there are indications for recolonization with C. difficile and changes in the gut microbiota after FMT. METHODS: DNA from the stool of the donor and recipient was subjected to illumina sequencing. Obtained read sets were assembled to contiguous sequences and open reading frames were predicted. Deduced proteins were taxonomically assigned. RESULTS: We detected complex and apparently healthy microbiomes in the donor's and recipient's intestines after FMT, but no indications for C. difficile colonization. CONCLUSIONS: Metagenomic analysis proved suitable to analyze the intestinal microbiome after FMT. Discussion of our evaluation procedure and data management may be helpful for future studies. We demonstrated restoration of a healthy and diverse gut microbiome with chimeric composition from donor and recipient, and long-lasting clearance of C. difficile. The procedure is simple, cheap, caused no side effects, and was stable over 3 years.


Assuntos
Clostridioides difficile , DNA Bacteriano/análise , Enterocolite Pseudomembranosa/terapia , Fezes/microbiologia , Intestinos/microbiologia , Microbiota , Terapia Biológica , Feminino , Humanos , Metagenômica , Pessoa de Meia-Idade , Análise de Sequência de DNA/métodos
20.
Biochem J ; 445(2): 193-203, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22519667

RESUMO

The uncharacterized α/ß-hydrolase protein OLEI01171 from the psychrophilic marine bacterium Oleispira antarctica belongs to the PF00756 family of putative esterases, which also includes human esterase D. In the present paper we show that purified recombinant OLEI01171 exhibits high esterase activity against the model esterase substrate α-naphthyl acetate at 5-30°C with maximal activity at 15-20°C. The esterase activity of OLEI01171 was stimulated 3-8-fold by the addition of chloride or several other anions (0.1-1.0 M). Compared with mesophilic PF00756 esterases, OLEI01171 exhibited a lower overall protein thermostability. Two crystal structures of OLEI01171 were solved at 1.75 and 2.1 Å resolution and revealed a classical serine hydrolase catalytic triad and the presence of a chloride or bromide ion bound in the active site close to the catalytic Ser148. Both anions were found to co-ordinate a potential catalytic water molecule located in the vicinity of the catalytic triad His257. The results of the present study suggest that the bound anion perhaps contributes to the polarization of the catalytic water molecule and increases the rate of the hydrolysis of an acyl-enzyme intermediate. Alanine replacement mutagenesis of OLEI01171 identified ten amino acid residues important for esterase activity. The replacement of Asn225 by lysine had no significant effect on the activity or thermostability of OLEI01171, but resulted in a detectable increase of activity at 35-45°C. The present study has provided insight into the molecular mechanisms of activity of a cold-active and anion-activated carboxyl esterase.


Assuntos
Ânions/metabolismo , Carboxilesterase/química , Carboxilesterase/metabolismo , Oceanospirillaceae/enzimologia , Óleos/metabolismo , Sequência de Aminoácidos , Regiões Antárticas , Carboxilesterase/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA