Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39201455

RESUMO

Amyloid beta (Aß) plays a major role in the pathogenesis of Alzheimer's disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aß-42 levels and the expression of genes involved in the generation, degradation, and transport of Aß proteins in liver samples from patients at different stages of metabolic dysfunction-associated liver disease (MASLD) and under steatotic conditions in vitro/in vivo. Amyloid precursor protein (APP), key Aß-metabolizing proteins, and Aß-42 were analyzed using RT-PCR, Western blotting, Luminex analysis in steatotic in vitro and fatty liver mouse models, and TaqMan qRT-PCR analysis in hepatic samples from patients with MASLD. Hepatocytes loaded with palmitic acid induced APP, presenilin, and neprilysin (NEP) expression, which was reversed by oleic acid. Increased APP and NEP, decreased BACE1, and unchanged Aß-42 protein levels were found in the steatotic mouse liver compared to the normal liver. Aß-42 concentrations were low in MASLD samples of patients with moderate to severe fibrosis compared to the livers of patients with mild or no MASLD. Consistent with the reduced Aß-42 levels, the mRNA expression of proteins involved in APP degradation (ADAM9/10/17, BACE2) and Aß-42 cleavage (MMP2/7/9, ACE) was increased. In the steatotic liver, the expression of APP- and Aß-metabolizing proteins is increased, most likely related to oxidative stress, but does not affect hepatic Aß-42 levels. Consistent with our previous findings, low Aß-42 levels in patients with liver fibrosis appear to be caused by the reduced production and enhanced non-amyloidogenic processing of APP.


Assuntos
Peptídeos beta-Amiloides , Fígado Gorduroso , Fígado , Animais , Humanos , Peptídeos beta-Amiloides/metabolismo , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Fragmentos de Peptídeos/metabolismo , Camundongos Endogâmicos C57BL , Hepatócitos/metabolismo , Hepatócitos/patologia , Feminino , Modelos Animais de Doenças , Neprilisina/metabolismo , Neprilisina/genética
2.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34345895

RESUMO

Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Animais , Canais de Cálcio , Túbulos Renais/metabolismo , Camundongos , Rim Policístico Autossômico Dominante/genética , Receptores de Superfície Celular , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
3.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175814

RESUMO

Inflammasomes and innate immune cells have been shown to contribute to liver injury, thereby activating Kupffer cells, which release several cytokines, including IL-6, IL-1ß, and TNFα. Augmenter of liver regeneration (ALR) is a hepatotropic co-mitogen that was found to have anti-oxidative and anti-apoptotic properties and to attenuate experimental non-alcoholic fatty liver disease (NAFLD) and cholestasis. Additionally, hepatic ALR expression is diminished in patients with NAFLD or cholestasis, but less is known about the mechanisms of its regulation under these conditions. Therefore, we aimed to investigate the role of IL-1ß in ALR expression and to elucidate the molecular mechanism of this regulation in vitro. We found that ALR promoter activity and mRNA and protein expression were reduced upon treatment with IL-1ß. Early growth response protein-1 (Egr-1), an ALR inducer, was induced by IL-1ß but could not activate ALR expression, which may be attributed to reduced Egr-1 binding to the ALR promoter. The expression and nuclear localization of hepatocyte nuclear factor 4 α (HNF4α), another ALR-inducing transcription factor, was reduced by IL-1ß. Interestingly, c-Jun, a potential regulator of ALR and HNF4α, showed increased nuclear phosphorylation levels upon IL-1ß treatment but did not change the expression of ALR or HNF4α. In conclusion, this study offers evidence regarding the regulation of anti-apoptotic and anti-oxidative ALR by IL-1ß through reduced Egr-1 promoter binding and diminished HNF4α expression independent of c-Jun activation. Low ALR tissue levels in NAFLD and cholestatic liver injury may be caused by IL-1ß and contribute to disease progression.


Assuntos
Colestase , Hepatopatia Gordurosa não Alcoólica , Humanos , Colestase/metabolismo , Citocinas/metabolismo , Interleucinas/metabolismo , Fígado/metabolismo , Regeneração Hepática , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37686029

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.


Assuntos
Fígado Gorduroso , Hepatócitos , Doenças Metabólicas , Humanos , Carcinoma Hepatocelular/genética , Quimiocina CCL20/genética , Quimiocinas , Hepatócitos/metabolismo , Ligantes , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Ácido Palmítico , Regulação para Cima , Gorduras Insaturadas/metabolismo
5.
J Am Soc Nephrol ; 24(11): 1830-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23990680

RESUMO

Mutations of the LMX1B gene cause nail-patella syndrome, a rare autosomal-dominant disorder affecting the development of the limbs, eyes, brain, and kidneys. The characterization of conventional Lmx1b knockout mice has shown that LMX1B regulates the development of podocyte foot processes and slit diaphragms, but studies using podocyte-specific Lmx1b knockout mice have yielded conflicting results regarding the importance of LMX1B for maintaining podocyte structures. In order to address this question, we generated inducible podocyte-specific Lmx1b knockout mice. One week of Lmx1b inactivation in adult mice resulted in proteinuria with only minimal foot process effacement. Notably, expression levels of slit diaphragm and basement membrane proteins remained stable at this time point, and basement membrane charge properties also did not change, suggesting that alternative mechanisms mediate the development of proteinuria in these mice. Cell biological and biophysical experiments with primary podocytes isolated after 1 week of Lmx1b inactivation indicated dysregulation of actin cytoskeleton organization, and time-resolved DNA microarray analysis identified the genes encoding actin cytoskeleton-associated proteins, including Abra and Arl4c, as putative LMX1B targets. Chromatin immunoprecipitation experiments in conditionally immortalized human podocytes and gel shift assays showed that LMX1B recognizes AT-rich binding sites (FLAT elements) in the promoter regions of ABRA and ARL4C, and knockdown experiments in zebrafish support a model in which LMX1B and ABRA act in a common pathway during pronephros development. Our report establishes the importance of LMX1B in fully differentiated podocytes and argues that LMX1B is essential for the maintenance of an appropriately structured actin cytoskeleton in podocytes.


Assuntos
Proteínas com Homeodomínio LIM/fisiologia , Podócitos/citologia , Fatores de Transcrição/fisiologia , Actinas/fisiologia , Envelhecimento , Animais , Apoptose , Diferenciação Celular , Colágeno Tipo IV/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Homeodomínio LIM/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Síndrome da Unha-Patela/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Podócitos/química , Podócitos/ultraestrutura , Proteinúria/etiologia , Fatores de Transcrição/genética , Peixe-Zebra
6.
Histochem Cell Biol ; 132(2): 199-210, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19381676

RESUMO

Nephronophthisis belongs to a family of recessive cystic kidney diseases and may arise from mutations in multiple genes. In this report we have used a spontaneous mouse mutant of type 3 nephronophthisis to examine whether the doxycycline-inducible synthesis of Timp-2, a natural inhibitor of matrix metalloproteinases, can influence renal cyst growth in transgenic mice. Metalloproteinases may exert either a negative or a positive effect on the progression of cystic kidney disease, and we reasoned that this may be most effectively examined by using a natural inhibitor. Surprisingly, already the application of doxycycline, which also inhibits matrix metalloproteinases, accelerated renal cyst growth and led to increased renal fibrosis, an additional effect of Timp-2 was not detected. The positive effect of doxycycline on kidney size was not due to a non-specific "anabolic effect" but was specific for cystic kidneys because it was not observed in non-cystic kidneys. When looking for potential metabolic changes we noticed that the urine of control animals led to an increase in the calcium response of LLC-PK(1) cells, whereas the urine of doxycycline-treated mice showed the opposite effect and even antagonized the urine of control animals. Further experiments demonstrated that the urine of control animals contained a heat-labile, proteinase K-resistant substance which appears to be responsible for the induction of a calcium response in LLC-PK(1) cells. We conclude that doxycycline accelerates cyst growth possibly by the induction of a substance which lowers the intracellular calcium concentration. Our data also add a note of caution when interpreting phenotypes of animal models based upon the tet system.


Assuntos
Cistos/enzimologia , Rim/enzimologia , Rim/patologia , Doenças Renais Policísticas/enzimologia , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Animais , Cistos/induzido quimicamente , Cistos/genética , Modelos Animais de Doenças , Doxiciclina/farmacologia , Fibrose , Células HeLa , Humanos , Rim/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doenças Renais Policísticas/induzido quimicamente , Doenças Renais Policísticas/genética , Receptores de Superfície Celular/genética , Inibidor Tecidual de Metaloproteinase-2/genética
7.
Neuro Oncol ; 7(4): 465-75, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16212811

RESUMO

Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel-Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1alpha staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target.


Assuntos
Neoplasias Encefálicas/enzimologia , Anidrases Carbônicas/biossíntese , Hemangioblastoma/etiologia , Western Blotting , Hemangioblastoma/enzimologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Doença de von Hippel-Lindau/complicações
8.
Cell Tissue Res ; 329(2): 329-38, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17497179

RESUMO

Inhibitors and stimulators of endothelial cell growth are essential for the coordination of blood vessel formation during organ growth and development. In the adult kidney, one of the major inhibitors of angiogenesis is pigment-epithelium-derived factor (PEDF). We have analyzed the expression and distribution of PEDF during various stages of renal development and aging with particular emphasis on the formation of functional glomeruli. We show that PEDF gene expression and protein levels in the kidney significantly increase with age. We have detected PEDF in the mesenchyme and endothelial cells at all developmental stages studied, in all regions of the nephrogenic zone in which the formation of new blood vessels is associated with the development of nephrons and collecting ducts, and in mature podocytes in the adult kidney. Our results are the first to suggest that PEDF is important in early renal postnatal development, that it could be relevant to the maturation of glomerular function and the filtration barrier formed by these cells, and that it may serve as an anti-angiogenic modulator during kidney development.


Assuntos
Envelhecimento/metabolismo , Proteínas do Olho/biossíntese , Rim/metabolismo , Fatores de Crescimento Neural/biossíntese , Serpinas/biossíntese , Animais , Proteínas do Olho/genética , Imuno-Histoquímica , Rim/irrigação sanguínea , Rim/crescimento & desenvolvimento , Fatores de Crescimento Neural/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Long-Evans , Serpinas/genética
9.
Cerebrovasc Dis ; 22(2-3): 143-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16691023

RESUMO

BACKGROUND: The pathophysiology of ischemic cerebral lesions following aneurysmal subarachnoid hemorrhage (SAH) is poorly understood. There is growing evidence that inflammatory reactions could be involved in the pathogenesis of such delayed occurring ischemic lesions. The aim of this study was to evaluate adhesion molecules with regard to these lesions following SAH. METHODS: Serum and cerebrospinal fluid (CSF) samples were taken daily from 15 patients up to day 9 after SAH and evaluated for intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1). RESULTS: CSF and serum samples correlated well during nearly the whole time course (p < 0.0001). A secondary increase in ICAM-1 and VCAM-1 in the serum and CSF correlated with an increase in flow velocity in the transcranial Doppler (p > 0.0001 and p < 0.007) but not to a delayed lesion in the CT scan. CONCLUSION: We believe that inflammatory processes are involved in the pathogenesis of cerebral vasospasm but they might only be a part of a multifactorial pathogenesis.


Assuntos
Aneurisma Roto/sangue , Molécula 1 de Adesão Intercelular/sangue , Aneurisma Intracraniano/sangue , Hemorragia Subaracnóidea/sangue , Molécula 1 de Adesão de Célula Vascular/sangue , Vasoespasmo Intracraniano/sangue , Adolescente , Adulto , Idoso , Aneurisma Roto/líquido cefalorraquidiano , Aneurisma Roto/fisiopatologia , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Feminino , Humanos , Molécula 1 de Adesão Intercelular/líquido cefalorraquidiano , Aneurisma Intracraniano/líquido cefalorraquidiano , Aneurisma Intracraniano/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Hemorragia Subaracnóidea/fisiopatologia , Fatores de Tempo , Ultrassonografia Doppler Transcraniana , Molécula 1 de Adesão de Célula Vascular/líquido cefalorraquidiano , Vasoespasmo Intracraniano/líquido cefalorraquidiano , Vasoespasmo Intracraniano/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA