Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361011

RESUMO

Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.


Assuntos
Bombyx/genética , Evolução Molecular , Fibroínas/genética , Animais , Bombyx/classificação , Bombyx/metabolismo , Glândulas Exócrinas/metabolismo , Fibroínas/química , Filogenia , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
2.
Molecules ; 25(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230728

RESUMO

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.


Assuntos
Aminoácidos/farmacologia , Antibacterianos/farmacologia , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazinamida/farmacologia , Tuberculose/tratamento farmacológico , Aminoácidos/química , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/efeitos dos fármacos , Rotação Ocular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazinamida/química , Staphylococcus aureus/efeitos dos fármacos
3.
BMC Genomics ; 17: 50, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758761

RESUMO

BACKGROUND: In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. RESULTS: A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. CONCLUSIONS: We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan.


Assuntos
Envelhecimento/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Transcriptoma/genética , Envelhecimento/fisiologia , Animais , Drosophila melanogaster/fisiologia , Ontologia Genética , Genoma de Inseto , Células Germinativas/metabolismo , Insulina/genética , Longevidade/genética , Reprodução/genética , Transdução de Sinais
4.
Biomacromolecules ; 17(5): 1776-87, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27049111

RESUMO

The silks produced by caterpillars consist of fibroin proteins that form two core filaments, and sericin proteins that seal filaments into a fiber and conglutinate fibers in the cocoon. Sericin genes are well-known in Bombyx mori (Bombycidae) but have received little attention in other insects. This paper shows that Antheraea yamamai (Saturniidae) contains five sericin genes very different from the three sericin genes of B. mori. In spite of differences, all known sericins are characterized by short exons 1 and 2 (out of 3-12 exons), expression in the middle silk gland section, presence of repeats with high contents of Ser and charged amino acid residues, and secretion as a sticky silk component soluble in hot water. The B. mori sericins represent tentative phylogenetic lineages (I) BmSer1 and orthologs in Saturniidae, (II) BmSer2, and (III) BmSer3 and related sericins of Saturniidae and of the pyralid Galleria mellonella. The lineage (IV) seems to be limited to Saturniidae. Concerted evolution of the sericin genes was apparently associated with gene amplifications as well as gene loses. Differences in the silk fiber morphology indicate that the cocktail of sericins linking the filaments and coating the fiber is modified during spinning. Silks are composite biomaterials of conserved function in spite of great diversity of their composition.


Assuntos
Proteínas de Insetos/química , Mariposas/metabolismo , Sericinas/química , Seda/química , Sequência de Aminoácidos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos , Sericinas/genética , Sericinas/metabolismo
5.
Purinergic Signal ; 11(1): 95-105, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25528157

RESUMO

Adenosine (Ado) is a ubiquitous metabolite that plays a prominent role as a paracrine homeostatic signal of metabolic imbalance within tissues. It quickly responds to various stress stimuli by adjusting energy metabolism and influencing cell growth and survival. Ado is also released by dead or dying cells and is present at significant concentrations in solid tumors. Ado signaling is mediated by Ado receptors (AdoR) and proteins modulating its concentration, including nucleoside transporters and Ado deaminases. We examined the impact of genetic manipulations of three Drosophila genes involved in Ado signaling on the incidence of somatic mosaic clones formed by the loss of heterozygosity (LOH) of tumor suppressor and marker genes. We show here that genetic manipulations with the AdoR, equilibrative nucleoside transporter 2 (Ent2), and Ado deaminase growth factor-A (Adgf-A) cause dramatic changes in the frequency of hyperplastic outgrowth clones formed by LOH of the warts (wts) tumor suppressor, while they have almost no effect on control yellow (y) clones. In addition, the effect of AdoR is dose-sensitive and its overexpression leads to the increase in wts hyperplastic epithelial outgrowth rates. Consistently, the frequency of mosaic hyperplastic outgrowth clones generated by the LOH of another tumor suppressor, discs overgrown (dco), belonging to the wts signaling pathway is also dependent on AdoR. Our results provide interesting insight into the maintenance of tissue homeostasis at a cellular level.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Receptores Purinérgicos P1/genética , Transdução de Sinais/genética , Animais , Drosophila melanogaster , Feminino , Perda de Heterozigosidade , Masculino
6.
Biomacromolecules ; 14(6): 1859-66, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23593923

RESUMO

Sericins are hydrophilic structural proteins produced by caterpillars in the middle section of silk glands and layered over fibroin proteins secreted in the posterior section. In the process of spinning, fibroins form strong solid filaments, while sericins seal the pair of filaments into a single fiber and glue the fiber into a cocoon. Galleria mellonella and the previously examined Bombyx mori harbor three sericin genes that encode proteins containing long repetitive regions. Galleria sericin genes are similar to each other and the protein repeats are built from short and extremely serine-rich motifs, while Bombyx sericin genes are diversified and encode proteins with long and complex repeats. Developmental changes in sericin properties are controlled at the level of gene expression and splicing. In Galleria , MG-1 sericin is produced throughout larval life until the wandering stage, while the production of MG-2 and MG-3 reaches a peak during cocoon spinning.


Assuntos
Mariposas/química , Sericinas/química , Seda/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Conformação Proteica , Splicing de RNA , Homologia de Sequência do Ácido Nucleico , Sericinas/genética , Especificidade da Espécie
7.
J Insect Physiol ; 147: 104523, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37187341

RESUMO

The silk produced by Lepidoptera caterpillars is a mixture of proteins secreted by the transformed labial glands, the silk glands (SG). The silk fiber consists of insoluble filamentous proteins that form a silk core and are produced in the posterior part of the SG and soluble coat proteins consisting of sericins and various other polypeptides secreted in the middle part of the SG. We constructed a silk gland specific transcriptome of Andraca theae and created a protein database required for peptide mass fingerprinting. We identified major silk components by proteomic analysis of cocoon silk and by searching for homologies with known silk protein sequences from other species. We identified 30 proteins including a heavy chain fibroin, a light chain fibroin and fibrohexamerin (P25) that form the silk core, as well as members of several structural families that form the silk coating. To uncover the evolutionary relationships among silk proteins, we included orthologs of silk genes from several recent genome projects and performed phylogenetic analyses. Our results confirm the recent molecular classification that the family Endromidae appears to be slightly more distant from the family Bombycidae. Our study provides important information on the evolution of silk proteins in the Bombycoidea, which is needed for proper annotation of the proteins and future functional studies.


Assuntos
Bombyx , Fibroínas , Manduca , Mariposas , Animais , Seda/química , Mariposas/metabolismo , Fibroínas/genética , Fibroínas/química , Fibroínas/metabolismo , Filogenia , Proteômica , Manduca/metabolismo , Bombyx/metabolismo , Proteínas de Insetos/metabolismo
8.
J Neurochem ; 121(3): 383-95, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22353178

RESUMO

Adenosine receptors (AR) belonging to the G protein-coupled receptor family influence a wide range of physiological processes. Recent elucidation of the structure of human A2AR revealed the conserved amino acids necessary for contact with the Ado moiety. However, the selectivity of Ado analogs for AR subtypes is still not well understood. We have shown previously that the Drosophila adenosine receptor (DmAdoR) evokes an increase in cAMP and calcium concentration in heterologous cells. In this study, we have characterized the second-messenger stimulation by endogenous DmAdoR in a Drosophila neuroblast cell line and examined a number of Ado analogs for their ability to interact with DmAdoR. We show that Ado can stimulate cAMP but not calcium levels in Drosophila cells. We found one full and four partial DmAdoR agonists, as well as four antagonists. The employment of the full agonist, 2-chloroadenosine, in flies mimicked in vivo the phenotype of DmAdoR over-expression, whereas the antagonist, SCH58261, rescued the flies from the lethality caused by DmAdoR over-expression. Differences in pharmacological effect of the tested analogs between DmAdoR and human A2AR can be partially explained by the dissimilarity of specific key amino acid residues disclosed by the alignment of these receptors.


Assuntos
Adenosina/análogos & derivados , Adenosina/farmacologia , AMP Cíclico/fisiologia , Drosophila/metabolismo , Receptores Purinérgicos P1/fisiologia , Transdução de Sinais/fisiologia , 2-Cloroadenosina/farmacologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Dados de Sequência Molecular , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Sobrevida , Triazóis/farmacologia
9.
Front Cell Dev Biol ; 10: 945572, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105362

RESUMO

Concentrative nucleoside transporters (Cnts) are unidirectional carriers that mediate the energy-costly influx of nucleosides driven by the transmembrane sodium gradient. Cnts are transmembrane proteins that share a common structural organization and are found in all phyla. Although there have been studies on Cnts from a biochemical perspective, no deep research has examined their role at the organismal level. Here, we investigated the role of the Drosophila melanogaster cnt1 gene, which is specifically expressed in the testes. We used the CRISPR/Cas9 system to generate a mutation in the cnt1 gene. The cnt1 mutants exhibited defects in the duration of copulation and spermatid maturation, which significantly impaired male fertility. The most striking effect of the cnt1 mutation in spermatid maturation was an abnormal structure of the sperm tail, in which the formation of major and minor mitochondrial derivatives was disrupted. Our results demonstrate the importance of cnt1 in male fertility and suggest that the observed defects in mating behavior and spermatogenesis are due to alterations in nucleoside transport and associated metabolic pathways.

10.
Arch Insect Biochem Physiol ; 77(4): 179-98, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21638308

RESUMO

Ips typographus (L.), the eight-spined spruce bark beetle, causes severe damage throughout Eurasian spruce forests and suitable nuclear markers are needed in order to study its population structure on a genetic level. Two closely related genes encoding α-amylase in I. typographus were characterized and named AmyA and AmyB. Both α-amylase paralogs consisted of six exons and five introns. AmyA encodes a polypeptide of 483 amino acids, whereas AmyB has two alternative transcripts encoding polypeptides of 483 and 370 amino acids. The expression levels of both genes were high during larval stage and adulthood. The AmyB transcripts were absent in the pupal stage. A modification of the allozyme staining method allowed us to detect two clusters of bands on the electrophoretic gel that may correspond to the two α-amylase genes. There was a correlation between the lack of AmyB expression in pupa and the absence of the fast migrating isozyme cluster at this stage, suggesting that the faster migrating isoforms are products of the AmyB gene, whereas the slowly migrating bands are derived from the AmyA.


Assuntos
Besouros/enzimologia , Proteínas de Insetos/metabolismo , Homologia de Sequência de Aminoácidos , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Besouros/genética , Eletroforese em Gel de Poliacrilamida , Eletroforese em Gel de Amido , Proteínas de Insetos/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/metabolismo , alfa-Amilases/genética
11.
Insect Biochem Mol Biol ; 130: 103527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476773

RESUMO

Many lepidopteran larvae produce silk secretions to build feeding tubes and cocoons that play important protective roles in their lives. Recent research on the silk of bombycoid and pyralid moths has shown that it contains several highly abundant silk components with remarkable mechanical properties. It was also found to contain a number of other proteins of which the functions have yet to be identified. To gain an overview of the silk composition in more primitive lepidopteran species and to identify the core silk components common to most species, we analyzed the cocoon proteins of Tineola bisselliella, which belongs to the basal ditrysian moth line. Using de novo transcriptome sequencing combined with mass spectrometry (MS)-based proteomics, we detected more than 100 secretory proteins in the silk cocoons. Fibroin, sericins, and protease inhibitors were found to be the most abundant proteins, along with several novel candidate silk components. We also verified the tissue and developmental stage specificity of the silk protein expression and characterized the morphology of both the silk glands and silk in T. bisselliella. Our study provides a detailed analysis of silk in the primitive moth, expands the known set of silk-specific genes in Lepidoptera, and helps to elucidate their evolutionary relationships.


Assuntos
Evolução Biológica , Mariposas , Seda , Animais , Fibroínas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Larva/fisiologia , Mariposas/genética , Mariposas/metabolismo , Mariposas/fisiologia , Inibidores de Proteases/metabolismo , Proteômica/métodos , Sericinas/metabolismo , Seda/química , Seda/genética , Seda/metabolismo
12.
Front Cell Dev Biol ; 9: 651367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777958

RESUMO

Adenosine (Ado) is an important signaling molecule involved in stress responses. Studies in mammalian models have shown that Ado regulates signaling mechanisms involved in "danger-sensing" and tissue-protection. Yet, little is known about the role of Ado signaling in Drosophila. In the present study, we observed lower extracellular Ado concentration and suppressed expression of Ado transporters in flies expressing mutant huntingtin protein (mHTT). We altered Ado signaling using genetic tools and found that the overexpression of Ado metabolic enzymes, as well as the suppression of Ado receptor (AdoR) and transporters (ENTs), were able to minimize mHTT-induced mortality. We also identified the downstream targets of the AdoR pathway, the modifier of mdg4 (Mod(mdg4)) and heat-shock protein 70 (Hsp70), which modulated the formation of mHTT aggregates. Finally, we showed that a decrease in Ado signaling affects other Drosophila stress reactions, including paraquat and heat-shock treatments. Our study provides important insights into how Ado regulates stress responses in Drosophila.

13.
Front Physiol ; 11: 576797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519499

RESUMO

Understanding the tradeoffs that result from successful infection responses is central to understanding how life histories evolve. Gaining such insights, however, can be challenging, as they may be pathogen specific and confounded with experimental design. Here, we investigated whether infection from gram positive or negative bacteria results in different physiological tradeoffs, and whether these infections impact life history later in life (post-diapause development), in the butterfly Pieris napi. During the first 24 h after infection (3, 6, 12, and 24 h), after removing effects due to injection, larvae infected with Micrococcus luteus showed a strong suppression of all non-immunity related processes while several types of immune responses were upregulated. In contrast, this tradeoff between homeostasis and immune response was much less pronounced in Escherichia coli infections. These differences were also visible long after infection, via weight loss and slower development, as well as an increased mortality at higher infection levels during later stages of development. Individuals infected with M. luteus, compared to E. coli, had a higher mortality rate, and a lower pupal weight, developmental rate and adult weight. Further, males exhibited a more negative impact of infection than females. Thus, immune responses come at a cost even when the initial infection has been overcome, and these costs are likely to affect later life history parameters with fitness consequences.

14.
Insects ; 10(10)2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31635152

RESUMO

Imaginal disc growth factors (IDGFs) are a small protein family found in insects. They are related to chitinases and implicated in multiple functions, including cell growth stimulation, antimicrobial activity, insect hemolymph clotting, and maintenance of the extracellular matrix. A number of new IDGFs have been found in several insect species and their detailed phylogenetic analysis provides a good basis for further functional studies. To achieve this goal, we sequenced Idgf cDNAs from several lepidopteran and trichopteran species and supplemented our data with sequences retrieved from public databases. A comparison of Idgf genes in different species showed that Diptera typically contain several Idgf paralogs with a simple exon-intron structure (2-3 exons), whereas lepidopteran Idgfs appear as a single copy per genome and contain a higher number of exons (around 9). Our results show that, while lepidopteran Idgfs, having single orthologs, are characterized by low divergence and stronger purifying selection over most of the molecule, the duplicated Idgf genes in Diptera, Idgf1 and Idgf4, exhibit signs of positive selection. This characterization of IDGF evolution provides, to our knowledge, the first information on the changes that formed these important molecules.

15.
Front Immunol ; 10: 2405, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681295

RESUMO

The pathogenic effect of mutant HTT (mHTT) which causes Huntington disease (HD) are not restricted to nervous system. Such phenotypes include aberrant immune responses observed in the HD models. However, it is still unclear how this immune dysregulation influences the innate immune response against pathogenic infection. In the present study, we used transgenic Drosophila melanogaster expressing mutant HTT protein (mHTT) with hemocyte-specific drivers and examined the immune responses and hemocyte function. We found that mHTT expression in the hemocytes did not affect fly viability, but the numbers of circulating hemocytes were significantly decreased. Consequently, we observed that the expression of mHTT in the hemocytes compromised the immune responses including clot formation and encapsulation which lead to the increased susceptibility to entomopathogenic nematode and parasitoid wasp infections. In addition, mHTT expression in Drosophila macrophage-like S2 cells in vitro reduced ATP levels, phagocytic activity and the induction of antimicrobial peptides. Further effects observed in mHTT-expressing cells included the altered production of cytokines and activation of JAK/STAT signaling. The present study shows that the expression of mHTT in Drosophila hemocytes causes deficient cellular and humoral immune responses against invading pathogens. Our findings provide the insight into the pathogenic effects of mHTT in the immune cells.


Assuntos
Expressão Gênica , Hemócitos/imunologia , Proteína Huntingtina/imunologia , Imunidade Humoral , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila melanogaster , Humanos , Proteína Huntingtina/genética
16.
Sci Rep ; 9(1): 3797, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846749

RESUMO

Seroins are small lepidopteran silk proteins known to possess antimicrobial activities. Several seroin paralogs and isoforms were identified in studied lepidopteran species and their classification required detailed phylogenetic analysis based on complete and verified cDNA sequences. We sequenced silk gland-specific cDNA libraries from ten species and identified 52 novel seroin cDNAs. The results of this targeted research, combined with data retrieved from available databases, form a dataset representing the major clades of Lepidoptera. The analysis of deduced seroin proteins distinguished three seroin classes (sn1-sn3), which are composed of modules: A (includes the signal peptide), B (rich in charged amino acids) and C (highly variable linker containing proline). The similarities within and between the classes were 31-50% and 22.5-25%, respectively. All species express one, and in exceptional cases two, genes per class, and alternative splicing further enhances seroin diversity. Seroins occur in long versions with the full set of modules (AB1C1B2C2B3) and/or in short versions that lack parts or the entire B and C modules. The classes and the modular structure of seroins probably evolved prior to the split between Trichoptera and Lepidoptera. The diversity of seroins is reflected in proposed nomenclature.


Assuntos
Proteínas de Insetos/metabolismo , Lepidópteros/metabolismo , Seda/metabolismo , Processamento Alternativo , Animais , Bases de Dados de Proteínas , Proteínas de Insetos/genética , Lepidópteros/genética , Conformação Proteica
17.
Insect Biochem Mol Biol ; 106: 28-38, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30448349

RESUMO

Lepidopteran silk is a complex assembly of proteins produced by a pair of highly specialized labial glands called silk glands. Silk composition has been examined only in a handful of species. Here we report on the analysis of silk gland-specific transcriptomes from three developmental stages of the greater wax moth, Galleria mellonella, combined with proteomics, Edman microsequencing and northern blot analysis. In addition to the genes known earlier, we identified twenty seven candidate cDNAs predicted to encode secretory proteins, which may represent novel silk components. Eight were verified by proteomic analysis or microsequencing, and several others were confirmed by similarity with known silk genes and their expression patterns. Our results revealed that most candidates encode abundant secreted proteins produced by middle silk glands including ten sericins, two seroins, one or more mucins, and several sequences without apparent similarity to known proteins. We did not detect any novel PSG-specific protein, confirming that there are only three fibroin subunits. Our data not only show that the number of sericin genes in the greater wax moth is higher than in other species thus far examined, but also the total content of soluble proteins in silk is twice as high in G. mellonella than in B. mori or A. yamamai. Our data will serve as a foundation for future identification and evolutionary analysis of silk proteins in the Lepidoptera.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , Proteoma , Seda/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Mucinas/química , Mucinas/genética , Mucinas/metabolismo , Filogenia , Alinhamento de Sequência , Sericinas/química , Sericinas/genética , Sericinas/metabolismo , Seda/metabolismo
18.
Front Physiol ; 8: 314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496417

RESUMO

[This corrects the article on p. 572 in vol. 7, PMID: 27932997.].

19.
Sci Rep ; 7: 43273, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230183

RESUMO

Drosophila imaginal disc growth factor 2 (IDGF2) is a member of chitinase-like protein family (CLPs) able to induce the proliferation of imaginal disc cells in vitro. In this study we characterized physiological concentrations and expression of IDGF2 in vivo as well as its impact on the viability and transcriptional profile of Drosophila cells in vitro. We show that IDGF2 is independent of insulin and protects cells from death caused by serum deprivation, toxicity of xenobiotics or high concentrations of extracellular adenosine (Ado) and deoxyadenosine (dAdo). Transcriptional profiling suggested that such cytoprotection is connected with the induction of genes involved in energy metabolism, detoxification and innate immunity. We also show that IDGF2 is an abundant haemolymph component, which is further induced by injury in larval stages. The highest IDGF2 accumulation was found at garland and pericardial nephrocytes supporting its role in organismal defence and detoxification. Our findings provide evidence that IDGF2 is an important trophic factor promoting cellular and organismal survival.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/imunologia , Drosophila/metabolismo , Metabolismo Energético , Glicoproteínas/metabolismo , Imunidade Inata , Inativação Metabólica , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Perfilação da Expressão Gênica , Hemolinfa/química
20.
Front Physiol ; 7: 572, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932997

RESUMO

Insects are known to respond to seasonal and adverse environmental changes by entering dormancy, also known as diapause. In some insect species, including Drosophila melanogaster, dormancy occurs in the adult organism and postpones reproduction. This adult dormancy has been studied in female flies where it is characterized by arrested development of ovaries, altered nutrient stores, lowered metabolism, increased stress and immune resistance and drastically extended lifespan. Male dormancy, however, has not been investigated in D. melanogaster, and its physiology is poorly known in most insects. Here we show that unmated 3-6 h old male flies placed at low temperature (11°C) and short photoperiod (10 Light:14 Dark) enter a state of dormancy with arrested spermatogenesis and development of testes and male accessory glands. Over 3 weeks of diapause we see a dynamic increase in stored carbohydrates and an initial increase and then a decrease in lipids. We also note an up-regulated expression of genes involved in metabolism, stress responses and innate immunity. Interestingly, we found that male flies that entered reproductive dormancy do not attempt to mate females kept under non-diapause conditions (25°C, 12L:12D), and conversely non-diapausing males do not mate females in dormancy. In summary, our study shows that male D. melanogaster can enter reproductive dormancy. However, our data suggest that dormant male flies deplete stored nutrients faster than females, studied earlier, and that males take longer to recover reproductive capacity after reintroduction to non-diapause conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA