Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nitric Oxide ; 51: 24-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26456342

RESUMO

Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine ß-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Oócitos/crescimento & desenvolvimento , Suínos/fisiologia , Animais , Western Blotting , Feminino , Ácido Hialurônico/química , Imuno-Histoquímica , Oócitos/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Suínos/crescimento & desenvolvimento
2.
Reprod Fertil Dev ; 27(7): 1097-105, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25482830

RESUMO

Mammalian meiotic maturation is regulated by changes in the phosphorylation state of proteins involved in signalling pathways. The regulatory proteins include the family of Src tyrosine kinases. Src family kinases (SFKs) are required for meiotic maturation of mouse oocytes, and it remains to be elucidated whether they play the same role in porcine oocytes. To clarify the role of SFKs in the meiotic maturation of porcine oocytes we used inhibition of SFKs, western blotting and immunolocalisation to determine the presence of SFKs and localisation in the oocytes and assays to determine the activity of maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Inhibition of SFKs resulted in the disruption of oocyte maturation and led to a decline in MPF and MAPK activity. The fluorescence intensity of SFKs in the cytoplasm and membrane of MI oocytes decreased significantly compared with germinal vesicle oocytes. The highest fluorescence intensity for SFKs was detected on the membrane of MII oocytes. Only weak fluorescence was detected in the perichromosomal area of MI and MII oocytes. These results prove that SFKs play an active role in the meiotic maturation of porcine oocytes by regulating MPF and MAPK activity.


Assuntos
Meiose/fisiologia , Oócitos/metabolismo , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo , Animais , Núcleo Celular/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Mesotelina , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oócitos/crescimento & desenvolvimento , Suínos
3.
PeerJ ; 4: e2280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602268

RESUMO

In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS), which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC) is a sulfur compound naturally occurring in garlic (Allium sativum), which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM) to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively) and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively) cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively). In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively). SAC may be a valuable supplement to cultivation media.

4.
PLoS One ; 10(1): e0116964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25615598

RESUMO

Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging.


Assuntos
Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/farmacologia , Oócitos/fisiologia , Sulfurtransferases/metabolismo , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Técnicas de Cultura Embrionária , Embrião de Mamíferos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Feminino , Sulfeto de Hidrogênio/metabolismo , Oócitos/efeitos dos fármacos , Partenogênese/efeitos dos fármacos , Suínos
5.
PLoS One ; 9(7): e99613, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24984032

RESUMO

Hydrogen sulfide (H2S) has been revealed to be a signal molecule with second messenger action in the somatic cells of many tissues, including the reproductive tract. The aim of this study was to address how exogenous H2S acts on the meiotic maturation of porcine oocytes, including key maturation factors such as MPF and MAPK, and cumulus expansion intensity of cumulus-oocyte complexes. We observed that the H2S donor, Na2S, accelerated oocyte in vitro maturation in a dose-dependent manner, following an increase of MPF activity around germinal vesicle breakdown. Concurrently, the H2S donor affected cumulus expansion, monitored by hyaluronic acid production. Our results suggest that the H2S donor influences oocyte maturation and thus also participates in the regulation of cumulus expansion. The exogenous H2S donor apparently affects key signal pathways of oocyte maturation and cumulus expansion, resulting in faster oocyte maturation with little need of cumulus expansion.


Assuntos
Células do Cúmulo/metabolismo , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Meiose/efeitos dos fármacos , Oócitos/metabolismo , Sulfetos/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Células do Cúmulo/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator Promotor de Maturação/metabolismo , Oócitos/citologia , Suínos
6.
Anim Reprod Sci ; 141(3-4): 154-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23972328

RESUMO

The processes of oocyte growth, acquisition of meiotic competence and meiotic maturation are regulated by a large number of molecules. One of them could be calcineurin consisting of catalytic subunit A (Aα, Aß, Aγ isoforms) and regulatory subunit B (B1, B2 isoforms). Calcineurin is involved in the meiotic maturation of oocytes in invertebrates or in lower vertebrates. In the mammalian oocytes, the possible role of calcineurin in the regulation of oocyte meiosis has not been clarified to date. In this study, to investigate the role of calcineurin during porcine oocyte growth, acquisition of meiotic competence and meiotic maturation, we analysed the expression and localisation of calcineurin subunits and the mRNA expression of calcineurin isoforms. Calcineurin was expressed in growing porcine oocytes, in fully grown oocytes and during their in vitro meiotic maturation. We found both subunits of calcineurin. Calcineurin A and calcineurin B were localised mainly in the cortex in all porcine oocytes. The changes in the intracellular localisation of separate calcineurin subunits during meiotic maturation were determined. We detected mRNA for calcineurin isoforms Aß, Aγ, B2 in oocytes and mRNA for calcineurin isoforms Aß, Aγ, B1, and B2 in cumular cells. To our knowledge, this is the first confirmation of calcineurin presence in porcine oocytes.


Assuntos
Calcineurina/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Transporte Proteico/fisiologia , Suínos , Animais , Calcineurina/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA