Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 19(9): 3153-3162, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635337

RESUMO

The last decade has witnessed the creation of a highly effective approach to in vivo pretargeting based on the inverse electron demand Diels-Alder (IEDDA) click ligation between tetrazine (Tz) and trans-cyclooctene (TCO). Despite the steady progression of this technology toward the clinic, concerns have persisted regarding whether this in vivo chemistry will work in humans given their larger size and blood volume. In this work, we describe the use of a 64Cu-labeled Tz radioligand ([64Cu]Cu-SarAr-Tz) and a TCO-bearing bisphosphonate (TCO-BP) for the pretargeted positron emission tomography (PET) imaging of osteodestructive lesions in a large animal model: companion dogs. First, in a small animal pilot study, healthy mice were injected with TCO-BP followed after 1 or 6 h by [64Cu]Cu-SarAr-Tz. PET images were collected 1, 6, and 24 h after the administration of [64Cu]Cu-SarAr-Tz, revealing that this approach produced high activity concentrations in the bone (>20 and >15%ID/g in the femur and humerus, respectively, at 24 h post injection) as well as high target-to-background contrast. Subsequently, companion dogs (n = 5) presenting with osteodestructive lesions were administered TCO-BP (5 or 10 mg/kg) followed 1 h later by [64Cu]Cu-SarAr-Tz (2.2-7.3 mCi; 81.4-270.1 MBq). PET scans were collected for each dog 4 h after the administration of the radioligand, and SUV values for the osteodestructive lesions, healthy bones, and kidneys were determined. In these animals, pretargeted PET clearly delineated healthy bone and produced very high activity concentrations in osteodestructive lesions. Low levels of uptake were observed in all healthy organs except for the kidneys and bladder due to the renal excretion of excess radioligand. Ultimately, this work not only illustrates that pretargeted PET with TCO-BP and [64Cu]Cu-SarAr-Tz is an effective tool for the visualization of osteodestructive lesions but also demonstrates for the first time that in vivo pretargeting based on IEDDA click chemistry is feasible in large animals.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Linhagem Celular Tumoral , Química Click , Ciclo-Octanos , Cães , Humanos , Camundongos , Projetos Piloto , Tomografia por Emissão de Pósitrons/métodos
2.
Bioconjug Chem ; 32(7): 1290-1297, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434428

RESUMO

We report herein the preclinical evaluation of new [64Cu]Cu-gastrin-releasing peptide receptor (GRPR)-targeting tracers, employing the potent peptide antagonist DPhe-Gln-Trp-Ala-VaI-Gly-His-Sta-Leu-NH2 conjugated to NOTA (in 1) or NODAGA (in 2) chelators via a 6-aminohexanoic acid linker. The Cu-1/2 metalated peptides were synthesized by reacting 1/2 with CuCl2 and were characterized by LC-ESI-MS and HR-ESI-MS. Cu-1/2 exhibited high GRPR-binding affinities with IC50 values <3 nM, as measured in a competition assay using the GRPR-expressing human PC-3 prostate cancer cell line and [125I]I-Tyr4-BBN as the competing ligand. Tracers [64Cu]Cu-1/2 were prepared in quantitative radiochemical yield (by radio-HPLC), and their identities were confirmed by coelution with their Cu-1/2 standards via comparative HPLC studies. Lipophilicity was measured in 1-octanol/PBS (pH 7.4), and the negative log D7.4 values (≤-1) confirmed the anticipated hydrophilic character for [64Cu]Cu-1/2. Both tracers demonstrated excellent in vitro stability, with ≥98% remaining intact through 24 h at physiological conditions (PBS, pH 7.4, 37 °C). Biodistribution in PC-3 tumor-bearing mice demonstrated good tumor uptake (%ID/g at 4 h: 4.34 ± 0.71 for [64Cu]Cu-1, 3.92 ± 1.03 for [64Cu]Cu-2) and rapid renal clearance (≥87% ID at 4 h). Tumor uptake was receptor-mediated, as verified by parallel GRPR-blocking studies. Small-animal PET/CT imaging studies validated the biodistribution data. These preclinical data support that the [64Cu]Cu-1/2 tracers show promise for further development as diagnostic PET imaging agents of GRPR-expressing tumors.


Assuntos
Radioisótopos de Cobre/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Receptores da Bombesina/metabolismo , Animais , Humanos , Masculino , Receptores da Bombesina/química
3.
Bioconjug Chem ; 29(12): 4040-4049, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30412382

RESUMO

With the long-term goal of developing theranostic agents for applications in nuclear medicine, in this work we evaluated the well-known NOTA and NODAGA chelators as bifunctional chelators (BFCs) for the [99mTc/186Re]Tc/Re-tricarbonyl core. In particular, we report model complexes of the general formula fac-[M(L)(CO)3]+ (M = Re, 99mTc, 186Re) where L denotes NOTA-Pyr (1) or NODAGA-Pyr (2), which are derived from conjugation of NOTA/NODAGA with pyrrolidine (Pyr). Further, as proof-of-principle, we synthesized the peptide bioconjugate NODAGA-sst2-ANT (3) and explored its complexation with the fac-[Re(CO)3]+ and fac-[99mTc][Tc(CO)3]+ cores; sst2-ANT denotes the somatostatin receptor (SSTR) antagonist 4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2. Rhenium complexes Re-1 through Re-3 were synthesized and characterized spectroscopically, and receptor binding affinity was demonstrated for Re-3 in SSTR-expressing cells (AR42J, IC50 = 91 nM). Radiolabeled complexes [99mTc]Tc/[186Re]Re-1/2 and [99mTc]Tc-3 were prepared in high radiochemical yield (>90%, determined by radio-HPLC) by reacting [99mTc]/[186Re][Tc/Re(OH2)3(CO)3]+ with 1-3 and correlated well with the respective Re-1 through Re-3 standards in comparative HPLC studies. All radiotracers remained intact through 24 h (99mTc-labeled complexes) or 48 h (186Re-labeled complexes) against 1 mM l-histidine and 1 mM l-cysteine (pH 7.4, 37 °C). Similarly, rat serum stability studies displayed no decomposition and low nonspecific binding of 9-24% through 4 h. Biodistribution of [99mTc]Tc-3 in healthy CF-1 mice demonstrated a favorable pharmacokinetic profile. Rapid clearance was observed within 1 h post-injection, predominantly via the renal system (82% of the injected dose was excreted in urine by 1 h), with low kidney retention (% ID/g: 11 at 1 h, 5 at 4 h, and 1 at 24 h) and low nonspecific uptake in other organs/tissues. Our findings establish NOTA and NODAGA as outstanding BFCs for the fac-[M(CO)3]+ core in the design and development of organometallic radiopharmaceuticals. Future in vivo studies of [99mTc]Tc- and [186Re]Re-tricarbonyl complexes of NODAGA/NOTA-biomolecule conjugates will further probe the potential of these chelates for nuclear medicine applications in diagnostic imaging and targeted radiotherapy, respectively.


Assuntos
Acetatos/química , Complexos de Coordenação/química , Compostos Heterocíclicos com 1 Anel/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Receptores de Somatostatina/química , Rênio/química , Animais , Quelantes/química , Cromatografia Líquida de Alta Pressão/métodos , Rim/metabolismo , Camundongos , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição Tecidual
4.
Nucl Med Biol ; 94-95: 46-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33515899

RESUMO

INTRODUCTION: With the long-term goal of developing a diagnostic (99mTc) and therapeutic (186Re) agent pair for targeting somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs), we developed novel metal-cyclized peptides through direct labeling of the potent SSTR2 antagonist Ac-4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2 (1) with Re (in Re-1), 99mTc (in [99mTc]Tc-1) and 186Re (in [186Re]Re-1). METHODS: Re-1 was characterized by LC-ESI-MS and HR-ESI-MS and was tested for receptor affinity in SSTR-expressing cells (AR42J). Radiolabeling of the peptide was achieved via ligand exchange from 99mTc-labeled glucoheptonate or [186Re]ReOCl3(PPh3)2, yielding [99mTc]Tc-1 or [186Re]Re-1, respectively. In vitro stability of [99mTc]Tc-1/[186Re]Re-1 in PBS (10 mM) at pH 7.4 and 37 °C was determined by HPLC analysis. Moreover, [99mTc]Tc-1 stability was tested in cysteine (1 mM) and rat serum under the same conditions. RESULTS: Re-1 consisted of two isomers, confirmed by LC-ESI-MS, with good SSTR2 affinity (IC50 = 43 ± 6 nM). Optimization of the 99mTc labeling through varying reaction parameters such as pH, reaction time, and Sn2+ and ligand concentrations resulted in high radiochemical yield (RCY ≥92%). Similarly, [186Re]Re-1 was prepared in reasonable RCY (≥50%). Both 99mTc/186Re-tracers consisted of two product isomers as identified by HPLC co-injection with Re-1. While [99mTc]Tc-1 was sufficiently stable in vitro (≥71% intact through 4 h in PBS, cysteine and rat serum), [186Re]Re-1 exhibited more moderate in vitro stability (58% intact after 1 h in PBS). CONCLUSIONS: Novel 99mTc/186Re-cyclized SSTR2 antagonist peptides were synthesized and characterized using the Re-cyclized analogue as a reference. Due to the nanomolar SSTR2 affinity of Re-1 and good in vitro stability of [99mTc]Tc-1, the latter shows early promise for development as a radiodiagnostic agent for SSTR-expressing NETs. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: The 99mTc-cyclized complex showed promising in vitro properties, and future in vivo studies will determine the potential for translating such a design into the human clinic.


Assuntos
Compostos de Organotecnécio/química , Peptídeos/química , Radioisótopos/química , Rênio/química , Animais , Ciclização , Marcação por Isótopo , Radioquímica , Ratos , Receptores de Somatostatina
5.
Mol Imaging Biol ; 23(1): 52-61, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32886303

RESUMO

PURPOSE: The goal of this work was to develop hydrophilic gastrin-releasing peptide receptor (GRPR)-targeting complexes of the general formula fac-[M(CO)3(L)]+ [M = natRe, 99mTc, 186Re; L: NOTA for 1, NODAGA for 2] conjugated to a powerful GRPR peptide antagonist (DPhe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) via a 6-aminohexanoic acid linker. PROCEDURES: Metallated-peptides were prepared employing the [M(OH2)3(CO)3]+ [M = Re, 99mTc, 186Re] precursors. Re-1/2 complexes were characterized with HR-MS. IC50 studies were performed for peptides 1/2 and their respective Re-1/2 complexes in a binding assay utilizing GRPR-expressing human PC-3 prostate cancer cells and [125I]I-Tyr4-BBN as the competing ligand. The 99mTc/186Re-complexes were identified by HPLC co-injection with their Re-analogues. All tracers were challenged in vitro at 37 °C against cysteine/histidine (phosphate-buffered saline 10 mM, pH 7.4) and rat serum. Biodistribution and micro-SPECT/CT imaging of [99mTc]Tc-1/2 and [186Re]Re-2 were performed in PC-3 tumor-bearing ICR SCID mice. RESULTS: High in vitro receptor affinity (IC50 2-3 nM) was demonstrated for all compounds. The 99mTc/186Re-tracers were found to be hydrophilic (log D7.4 ≤ - 1.35) and highly stable. Biodistribution in PC-3 xenografted mice revealed good tumor uptake (%ID/g at 1 h: 4.3 ± 0.7 for [99mTc]Tc-1, 8.3 ± 0.9 for [99mTc]Tc-2 and 4.2 ± 0.8 for [186Re]Re-2) with moderate retention over 24 h. Rapid renal clearance was observed for [99mTc]Tc-2 and [186Re]Re-2 (> 84 % at 4 h), indicating favorable pharmacokinetics. Micro-SPECT/CT images for the 99mTc-tracers clearly visualized PC-3 tumors in agreement with the biodistribution data and with superior imaging properties found for [99mTc]Tc-2. CONCLUSIONS: [99mTc]Tc-2 shows promise for further development as a GRPR-imaging agent. [186Re]Re-2 demonstrated very similar in vivo behavior to [99mTc]Tc-2, and further studies are therefore justified to explore the theranostic potential of our approach for targeting of GRPR-positive cancers.


Assuntos
Acetatos/química , Compostos Heterocíclicos com 1 Anel/química , Neoplasias/diagnóstico por imagem , Radioisótopos/química , Receptores da Bombesina/metabolismo , Rênio/química , Tecnécio/química , Animais , Concentração Inibidora 50 , Ligantes , Camundongos SCID , Peptídeos/química , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual , Imagem Corporal Total
6.
Nucl Med Biol ; 71: 39-46, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31129499

RESUMO

INTRODUCTION: The aim of this work was to develop diagnostic (99mTc) and therapeutic (186Re) agents for targeting somatostatin receptor (SSTR)-positive neuroendocrine tumors (NETs). In this regard, we evaluated in vitro complexes of the general formula [M(CO)3(L-sst2-ANT)] (M = 99mTc, 186Re), where L denotes NODAGA or NOTA and sst2-ANT denotes the potent SSTR2 antagonist 4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2. Moreover, we assessed the in vivo properties of the 99mTc-complexes in an animal SSTR-tumor model. METHODS: The [99mTc]/[186Re][Tc/Re(OH2)3(CO)3]+ precursors were utilized to prepare the 99mTc/186Re-complexes, which were identified by HPLC co-injection with their natRe analogues. The tracers were challenged in vitro at 37 °C against cysteine and histidine in phosphate-buffered saline (pH 7.4) and in rat serum. Biodistribution and micro-SPECT/CT imaging studies of the 99mTc-tracers were performed in AR42J tumor-bearing female ICR SCID mice. RESULTS: The 99mTc-complexes were prepared in high radiochemical yield (RCY > 90%, by HPLC), with lower RCY (≤30%) obtained for 186Re-complexes. Tracers remained intact in vitro and displayed low non-specific binding (10-25%) to rat serum proteins. Biodistribution of [99mTc]Tc-NODAGA-sst2-ANT revealed low tumor uptake (2.78 ±â€¯0.27 %ID/g) at 1 h, while high tumor uptake (16.70 ±â€¯3.32 %ID/g) was found for [99mTc]Tc-NOTA-sst2-ANT. Moderate to low tumor retention was observed for both tracers after 4 and 24 h. Tumor uptake for [99mTc]Tc-NOTA-sst2-ANT was receptor-mediated, as demonstrated by parallel SSTR blocking studies. Rapid renal clearance was observed for both tracers, and SPECT/CT images clearly delineated the tumors, in agreement with the biodistribution data. CONCLUSIONS: The [99mTc]Tc-NOTA-sst2-ANT complex demonstrated high tumor uptake and rapid clearance in a SSTR-tumor mouse model, showing potential for further development. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Preclinical data support the feasibility of the [99mTc]Tc/[186Re]Re-NOTA/NODAGA labeling strategy for use in the development of theranostic radiopharmaceuticals for translation into the human clinic for targeting of SSTR-expressing NETs.


Assuntos
Acetatos/química , Compostos Heterocíclicos com 1 Anel/química , Interações Hidrofóbicas e Hidrofílicas , Compostos de Organotecnécio/química , Compostos de Organotecnécio/metabolismo , Radioisótopos/química , Receptores de Somatostatina/metabolismo , Rênio/química , Animais , Camundongos , Compostos de Organotecnécio/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual
7.
Nucl Med Biol ; 49: 24-29, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28288384

RESUMO

INTRODUCTION: Rhenium-186g (t1/2 = 3.72 d) is a ß- emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ)186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a higher specific activity, allowing it to be used more broadly for targeted radiotherapy applications. This targets the unmet clinical need for more efficient radiotherapeutics. METHODS: A target consisting of highly enriched, pressed 186WO3 was irradiated with protons at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF) to evaluate 186gRe product yield and quality. LANL-IPF was operated in a dedicated nominal 40 MeV mode. Alkaline dissolution followed by anion exchange chromatography was used to isolate 186gRe from the target material. Phantom and radiolabeling studies were conducted with the produced 186gRe activity. RESULTS: A 186gRe batch yield of 1.38 ± 0.09 MBq/µAh or 384.9 ± 27.3 MBq/C was obtained after 16.5 h in a 205 µA average/230µA maximum current proton beam. The chemical recovery yield was 93% and radiolabeling was achieved with efficiencies ranging from 60-80%. True specific activity of 186gRe at EOB was determined via ICP-AES and amounted to 0.788 ± 0.089 GBq/µg (0.146 ± 0.017 GBq/nmol), which is approximately seven times higher than the product obtained from neutron capture in a reactor. Phantom studies show similar imaging quality to the gold standard 99mTc. CONCLUSIONS: We report a preliminary study of the large-scale production and novel anion exchange based chemical recovery of high specific activity 186gRe from enriched 186WO3 targets in a high-intensity proton beam with exceptional chemical recovery and radiochemical purity.


Assuntos
Neoplasias/radioterapia , Óxidos/química , Terapia com Prótons/métodos , Radioquímica/métodos , Rênio/química , Rênio/uso terapêutico , Tungstênio/química , Marcação por Isótopo , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA