Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(6): 4417-4422, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33623849

RESUMO

Plasmonic nanolasers (spasers) are of intense interest, attributable to their ability to generate a high-intensity coherent radiation. We infiltrated a three-dimensional silica-based photonic crystal (PhC) film with spasers, composed of spherical gold cores, surrounded by silica shells with dye molecules. In spasers, the gold nanospheres supported the surface plasmons and the dye molecules transferred incoming optical energy to the surface plasmons. Our experiments show that such a structure, consisting of a PhC, which acts as an external distributed feedback resonator, and spasers, can serve as a coherent source of electromagnetic radiation. Spasers were locked in phase by the common radiation causing a phenomenon called the lasing spaser: the emission of spatially and temporarily coherent light normal to the surface of the PhC film. The far-field radiation patterns appeared in the shape of the Star-of-David, which is due to the dispersion along the Brillouin zone boundary. The infiltration of the spasers into the PhC led to drastic narrowing of the emission peak and an 80-fold decrease in the spaser generation threshold with respect to the same spasers in a suspension at room temperature.

2.
Nat Commun ; 8: 15528, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593987

RESUMO

Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.


Assuntos
Imagem Multimodal/métodos , Pontos Quânticos , Dióxido de Silício/química , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular , Meios de Contraste/química , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/química , Ouro/química , Humanos , Lasers , Luz , Teste de Materiais , Nanopartículas Metálicas/química , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanosferas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA