Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174250, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936722

RESUMO

Harmful cyanobacteria blooms are a growing threat in estuarine waters as upstream blooms are exported into coastal environments. Cyanobacteria can produce potent toxins, one of which-hepatotoxic microcystins (MCs)-can persist and accumulate within the food web. Filter-feeding invertebrates may biomagnify toxins up to 100× ambient concentrations. As such, bivalves can be used as an environmentally relevant and highly sensitive sentinel for MC monitoring. To date there has been little research on cyanotoxin bioaccumulation in estuaries. The Sacramento-San Joaquin Delta (Delta) aquatic food web has undergone a profound change in response to widespread colonization of aquatic invasive species such as Asian clams (Corbicula fluminea) in the freshwater portion of the Delta. These clams are prolific-blanketing areas of the Delta at densities up to 1000 clams/m2 and are directly implicated in the pelagic organism decline of threatened and endangered fishes. We hypothesized that Asian clams accumulate MCs which may act as an additional stressor to the food web and MCs would seasonally be in exceedance of public health advisory levels. MCs accumulation in Delta Asian clams and signal crayfish (Pacifastacus leniusculus) were studied over a two-year period. ELISA and LC-MS analytical methods were used to measure free and protein-bound MCs in clam and crayfish tissues. We describe an improved MC extraction method for use when analyzing these taxa by LC-MS. MCs were found to accumulate in Asian clams across all months and at all study sites, with seasonal maxima occurring during the summer. Although MC concentrations rarely exceeded public health advisory levels, the persistence of MCs year-round still poses a chronic risk to consumers. Crayfish at times also accumulated high concentrations of MCs. Our results highlight the utility of shellfish as sentinel organisms for monitoring in estuarine areas.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Microcistinas , Microcistinas/análise , Animais , California , Estuários , Astacoidea , Poluentes Químicos da Água/análise , Bivalves/metabolismo , Corbicula
2.
Commun Earth Environ ; 5(1): 266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779128

RESUMO

Ocean spring phytoplankton blooms are dynamic periods important to global primary production. We document vertical patterns of a diverse suite of eukaryotic algae, the prasinophytes, in the North Atlantic Subtropical Gyre with monthly sampling over four years at the Bermuda Atlantic Time-series Study site. Water column structure was used to delineate seasonal stability periods more ecologically relevant than seasons defined by calendar dates. During winter mixing, tiny prasinophytes dominated by Class II comprise 46 ± 24% of eukaryotic algal (plastid-derived) 16S rRNA V1-V2 amplicons, specifically Ostreococcus Clade OII, Micromonas commoda, and Bathycoccus calidus. In contrast, Class VII are rare and Classes I and VI peak during warm stratified periods when surface eukaryotic phytoplankton abundances are low. Seasonality underpins a reservoir of genetic diversity from multiple prasinophyte classes during warm periods that harbor ephemeral taxa. Persistent Class II sub-species dominating the winter/spring bloom period retreat to the deep chlorophyll maximum in summer, poised to seed the mixed layer upon winter convection, exposing a mechanism for initiating high abundances at bloom onset. Comparisons to tropical oceans reveal broad distributions of the dominant sub-species herein. This unparalleled window into temporal and spatial niche partitioning of picoeukaryotic primary producers demonstrates how key prasinophytes prevail in warm oceans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA