Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(1): 53-58, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255053

RESUMO

Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ13C compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ13C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.6‰), and those typical of modern prokaryotic phototrophs (-25 ± 10‰). The SIMS data for the two highest δ13C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ13C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ13C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.


Assuntos
Archaea/química , Isótopos de Carbono/análise , Fósseis , Datação Radiométrica , Austrália
2.
Proc Natl Acad Sci U S A ; 112(7): 2087-92, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646436

RESUMO

The recent discovery of a deep-water sulfur-cycling microbial biota in the ∼ 2.3-Ga Western Australian Turee Creek Group opened a new window to life's early history. We now report a second such subseafloor-inhabiting community from the Western Australian ∼ 1.8-Ga Duck Creek Formation. Permineralized in cherts formed during and soon after the 2.4- to 2.2-Ga "Great Oxidation Event," these two biotas may evidence an opportunistic response to the mid-Precambrian increase of environmental oxygen that resulted in increased production of metabolically useable sulfate and nitrate. The marked similarity of microbial morphology, habitat, and organization of these fossil communities to their modern counterparts documents exceptionally slow (hypobradytelic) change that, if paralleled by their molecular biology, would evidence extreme evolutionary stasis.


Assuntos
Bactérias/isolamento & purificação , Evolução Biológica , Fósseis/microbiologia , Enxofre/metabolismo , Bactérias/metabolismo
3.
J Struct Biol ; 189(3): 230-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25600412

RESUMO

The serpulid tubeworm, Hydroides elegans, is an ecologically and economically important species whose biology has been fairly well studied, especially in the context of larval development and settlement on man-made objects (biofouling). Nevertheless, ontogenetic changes associated with calcareous tube composition and structures have not yet been studied. Here, the ultrastructure and composition of the calcareous tubes built by H. elegans was examined in the three early calcifying juvenile stages and in the adult using XRD, FTIR, ICP-OES, SEM and Raman spectroscopy. Ontogenetic shifts in carbonate mineralogy were observed, for example, juvenile tubes contained more amorphous calcium carbonate and were predominantly aragonitic whereas adult tubes were bimineralic with considerably more calcite. The mineral composition gradually shifted during the tube development as shown by a decrease in Sr/Ca and an increase of Mg/Ca ratios with the tubeworm's age. The inner tube layer contained calcite, whereas the outer layer contained aragonite. Similarly, the tube complexity in terms of ultrastructure was associated with development. The sequential appearance of unoriented ultrastructures followed by oriented ultrastructures may reflect the evolutionary history of serpulid tube biominerals. As aragonitic structures are more susceptible to dissolution under ocean acidification (OA) conditions but are more difficult to be removed by anti-fouling treatments, the early developmental stages of the tubeworms may be vulnerable to OA but act as the important target for biofouling control.


Assuntos
Poliquetos/fisiologia , Poliquetos/ultraestrutura , Animais , Incrustação Biológica , Cálcio/análise , Carbonato de Cálcio/análise , Embrião não Mamífero , Feminino , Magnésio/análise , Masculino , Metamorfose Biológica , Microscopia Eletrônica de Varredura , Poliquetos/embriologia , Poliquetos/crescimento & desenvolvimento , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
4.
Am J Bot ; 100(8): 1626-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23926220

RESUMO

PREMISE OF THE STUDY: Permineralization provides the most faithful known mode of three-dimensional preservation of the morphology and cellular anatomy of fossil plants. Standard optical microscopic documentation of such structures can provide only an approximation of their true three-dimensional form and is incapable of revealing fine-structural (<300 nm) details, deficiencies that can be addressed by the use of confocal laser scanning microscopy (CLSM). METHODS: To demonstrate the usefulness of CLSM in such studies, we compare confocal laser scanning micrographs and optical photomicrographs of the permineralized tissues of rhizomes and petioles of the Eocene fern Dennstaedtiopsis aerenchymata preserved in cherts of the Clarno Formation of Oregon, USA, and the Allenby Formation (Princeton chert) of British Columbia, Canada. KEY RESULTS: The laser-induced fluorescence detected by CLSM produces crisp high-resolution images of the three-dimensionally permineralized tissues of Dennstaedtiopsis aerenchymata. Tissues analyzed include the epidermis and epidermal hairs, cortex, aerenchyma, endodermis, vascular tissue, and pith-for each of which, CLSM yields results superior to those of standard optical microscopy. CLSM and previous Raman spectroscopic analyses of the same specimens provide evidence consistent with original biochemistry. CONCLUSIONS: Use of CLSM to characterize the morphology and cellular anatomy of permineralized fossil plants can provide accurate data in two and three dimensions at high spatial resolution, information that can be critically important to taxonomic, taphonomic, and developmental interpretations. Results presented here from this first detailed CLSM-based study of permineralized plant axes indicate that this nonintrusive, nondestructive technique should be widely applicable in paleobotany.


Assuntos
Dennstaedtiaceae/anatomia & histologia , Fósseis , Microscopia Confocal/métodos , Caules de Planta/anatomia & histologia , Colúmbia Britânica , Geografia , Oregon
6.
Astrobiology ; 22(10): 1239-1254, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194869

RESUMO

The current strategy for detecting evidence of ancient life on Mars-a primary goal of NASA's ongoing Mars 2020 mission-is based largely on knowledge of Precambrian life and of its preservation in Earth's early rock record. The fossil record of primitive microorganisms consists mainly of stromatolites and other microbially influenced sedimentary structures, which occasionally preserve microfossils or other geochemical traces of life. Raman spectroscopy is an invaluable tool for identifying such signs of life and is routinely performed on Precambrian microfossils to help establish their organic composition, degree of thermal maturity, and biogenicity. The Mars 2020 rover, Perseverance, is equipped with a deep-ultraviolet (UV) Raman spectrometer as part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument, which will be used in part to characterize the preservation of organic matter in the ancient sedimentary rocks of Jezero crater and therein search for possible biosignatures. To determine the deep-UV Raman spectra characteristic of ancient microbial fossils, this study analyzes individual microfossils from 14 Precambrian cherts using deep-UV (244 nm) Raman spectroscopy. Spectra obtained were measured and calibrated relative to a graphitic standard and categorized according to the morphology and depositional environment of the fossil analyzed and its Raman-indicated thermal maturity. All acquired spectra of the fossil kerogens include a considerably Raman-enhanced and prominent first-order Raman G-band (∼1600 cm-1), whereas its commonly associated D-band (∼1350 cm-1) is restricted to specimens of lower thermal maturity (below greenschist facies) that thus have the less altered biosignature indicative of relatively well-preserved organic matter. If comparably preserved, similar characteristics would be expected to be exhibited by microfossils or ancient organic matter in rock samples collected and cached on Mars in preparation for future sample return to Earth.


Assuntos
Marte , Análise Espectral Raman , Planeta Terra , Meio Ambiente Extraterreno , Fósseis , Sedimentos Geológicos/química , Análise Espectral Raman/métodos
7.
Astrobiology ; 6(1): 1-16, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16551223

RESUMO

A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.


Assuntos
Fósseis , Microscopia Confocal/métodos , Paleontologia/métodos , Cianobactérias/ultraestrutura , Exobiologia , Imageamento Tridimensional/métodos , Técnicas Microbiológicas
8.
Appl Spectrosc ; 60(4): 352-5, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16613629

RESUMO

Raman spectroscopy has long been used for the chemical analysis of organic matter, including natural products, using excitation wavelengths in the visible, infrared, or ultraviolet portions of the spectrum. The use of ultraviolet resonance Raman spectroscopy (UVRR) to study bulk samples of plant tissue has typically been carried out by rotating homogeneous macro-samples beneath the laser beam in order to minimize the amount of UV radiation impinging on any one spot, thereby avoiding its potentially damaging effects on the organic matter analyzed. This paper extends the use of UVRR to the study on a microscopic scale of individual plant cell walls by use of the controlled micro-displacement of a sample.


Assuntos
Parede Celular/química , Plantas/química , Análise Espectral Raman/métodos , Espectrofotometria Ultravioleta
9.
Astrobiology ; 5(3): 333-71, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15941380

RESUMO

Laser-Raman imagery is a non-intrusive, non-destructive analytical technique, recently introduced to Precambrian paleobiology, that can be used to demonstrate a one-to-one spatial correlation between the optically discernible morphology and kerogenous composition of permineralized fossil microorganisms. Made possible by the submicron-scale resolution of the technique and its high sensitivity to the Raman signal of carbonaceous matter, such analyses can be used to determine the chemical-structural characteristics of organic-walled microfossils and associated sapropelic carbonaceous matter in acid-resistant residues and petrographic thin sections. Here we use this technique to analyze kerogenous microscopic fossils and associated carbonaceous sapropel permineralized in 22 unmetamorphosed or little-metamorphosed fine-grained chert units ranging from approximately 400 to approximately 2,100 Ma old. The lineshapes of the Raman spectra acquired vary systematically with five indices of organic geochemical maturation: (1) the mineral-based metamorphic grade of the fossil-bearing units; (2) the fidelity of preservation of the fossils studied; (3) the color of the organic matter analyzed; and both the (4) H/C and (5) N/C ratios measured in particulate kerogens isolated from bulk samples of the fossil-bearing cherts. Deconvolution of relevant spectra shows that those of relatively well-preserved permineralized kerogens analyzed in situ exhibit a distinctive set of Raman bands that are identifiable also in hydrated organic-walled microfossils and particulate carbonaceous matter freed from the cherts by acid maceration. These distinctive Raman bands, however, become indeterminate upon dehydration of such specimens. To compare quantitatively the variations observed among the spectra measured, we introduce the Raman Index of Preservation, an approximate measure of the geochemical maturity of the kerogens studied that is consistent both with the five indices of organic geochemical alteration and with spectra acquired from fossils experimentally heated under controlled laboratory conditions. The results reported provide new insight into the chemical-structural characteristics of ancient carbonaceous matter, the physicochemical changes that accompany organic geochemical maturation, and a new criterion to be added to the suite of evidence by which to evaluate the origin of minute fossil-like objects of possible but uncertain biogenicity.


Assuntos
Fósseis , Lasers , Animais , Cianobactérias , Fenômenos Geológicos , Geologia , Análise Espectral Raman/métodos , Tempo
10.
Astrobiology ; 12(7): 619-33, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22794252

RESUMO

Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum.


Assuntos
Bactérias/citologia , Sulfato de Cálcio/química , Exobiologia , Meio Ambiente Extraterreno , Fósseis , Vida , Marte , Microscopia Confocal , Análise Espectral Raman , Fatores de Tempo
11.
Astrobiology ; 8(4): 735-46, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18844456

RESUMO

For the foreseeable future, the search for evidence of past life in rocks acquired from other planets will be constrained by the amount of sample available and by the fidelity of preservation of any fossils present. What amount of rock is needed to establish the existence of past life? To address this question, we studied a minute amount of rock collected from cherty dolomites of the Proterozoic Buxa Formation in the metamorphically altered tectonically active northeastern Himalaya. In particular, we investigated 2 small petrographic thin sections-one from each of 2 bedded chert horizons exposed in the Ranjit River stratigraphic section northwest of Rishi, Sikkim, India-that together comprise an area of approximately 5 cm(2) (about the size of a US postage stamp) and have a total rock weight of approximately 0.1 g. Optical microscopy, confocal laser scanning microscopy, and Raman spectroscopy and imagery demonstrate that each of the thin sections contains a rich assemblage of 3-dimensionally permineralized organic-walled microfossils. This study, the first report of Proterozoic microfossils in units of the Ranjit tectonic window, demonstrates that firm evidence of early life can be adduced from even a minuscule amount of fossil-bearing ancient rock.


Assuntos
Fósseis , Paleontologia/métodos , Sedimentos Geológicos/química , Geologia , Índia , Vida , Microscopia/métodos , Microscopia Confocal , Siquim , Análise Espectral Raman/métodos , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 104(15): 6289-92, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17404242

RESUMO

The Early Cambrian (approximately 540 million years old) Meishucun fossil assemblage of Ningqiang County (Shaanxi Province), China, contains the oldest complex skeletonized organisms known in the geological record. We here report the finding in this assemblage of an exquisitely preserved late-stage embryo of a ctenophore ("comb jelly"), its fine structure documented by confocal laser scanning microscopy and shown by Raman spectroscopy to be composed of carbonaceous kerogen permineralized in apatite. In its spheroidal morphology, the presence of eight comb rows and the absence of tentacles, this embryo resembles an adult ctenophore (Maotianoascus octonarius) known from the immediately younger Chengjiang fauna of Yunnan, China. The oldest ctenophore and the only embryonic comb jelly known from the fossil record, this exceptionally well preserved specimen provides important clues about the early evolution of the phylum Ctenophora and of metazoans in general.


Assuntos
Ctenóforos/ultraestrutura , Fósseis , Animais , China , Embrião não Mamífero/ultraestrutura , Microscopia Confocal , Análise Espectral Raman
13.
Proc Natl Acad Sci U S A ; 99(14): 9117-20, 2002 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12089337

RESUMO

Atomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in approximately 650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of approximately 200-nm-sized angular platelets of polycyclic aromatic kerogen. Together, AFM and laser-Raman spectroscopy provide means by which to elucidate the submicron-scale structure of individual microscopic fossils, investigate the geochemical maturation of ancient organic matter, and, potentially, distinguish true fossils from pseudofossils and probe the mechanisms of fossil preservation by silica permineralization.


Assuntos
Fósseis , Animais , Evolução Biológica , Cazaquistão , Microscopia de Força Atômica , Plâncton/química , Plâncton/ultraestrutura , Hidrocarbonetos Policíclicos Aromáticos/análise , Fatores de Tempo
14.
Nature ; 416(6876): 73-6, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11882894

RESUMO

Unlike the familiar Phanerozoic history of life, evolution during the earlier and much longer Precambrian segment of geological time centred on prokaryotic microbes. Because such microorganisms are minute, are preserved incompletely in geological materials, and have simple morphologies that can be mimicked by nonbiological mineral microstructures, discriminating between true microbial fossils and microscopic pseudofossil 'lookalikes' can be difficult. Thus, valid identification of fossil microbes, which is essential to understanding the prokaryote-dominated, Precambrian 85% of life's history, can require more than traditional palaeontology that is focused on morphology. By combining optically discernible morphology with analyses of chemical composition, laser--Raman spectroscopic imagery of individual microscopic fossils provides a means by which to address this need. Here we apply this technique to exceptionally ancient fossil microbe-like objects, including the oldest such specimens reported from the geological record, and show that the results obtained substantiate the biological origin of the earliest cellular fossils known.


Assuntos
Fósseis , Análise Espectral Raman , Archaea , Bactérias , Carbonatos/análise , Grafite/análise , Técnicas Microbiológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA