Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; 33(2): 123-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35822219

RESUMO

Drug-induced convulsions-often caused by the inhibition of GABA receptors and stimulation of glutamate receptors-are difficult to predict in animals. In this study, we attempted to detect the proconvulsant potential using motor-evoked potentials (MEPs) after focal electrical stimulation or upon using a functional observational battery (FOB). Pentylenetetrazole, kainic acid, and pilocarpine were used as convulsion-inducing drugs, and baclofen was used as a negative control. First, each compound was administered to male rats, and the FOB tests were performed. All drugs induced behavioral changes, but no commonality was found. Single electrical stimulation train MEPs were recorded under anesthesia for 60 min (at 5 min intervals) after administration of each drug. A dose-dependent increase in MEPs was observed for each convulsion-inducing drug. Moreover, paired electrical stimulation (conditioned and test) of the cerebral motor cortex was conducted with a 1-15 ms interstimulus interval (ISI), 10 min after administration of the drug. All convulsion-inducing drugs inhibited the short-interval intracortical inhibition (ISI: 3 ms), which may be associated with GABA. Intracortical facilitation (ISI: 11 ms), related to glutamate, was not enhanced by any drug but was inhibited by pilocarpine. Dose correlation was not found in short-interval intracortical inhibition or intracortical facilitation in any drugs. No changes in MEPs were observed after baclofen administration. These results suggest that it is possible to evaluate the convulsion potential and associated mechanisms using MEP, independent of the behavioral changes. The early identification of convulsion potential using this model will lead to more efficient drug development.


Assuntos
Baclofeno , Músculo Esquelético , Masculino , Ratos , Animais , Músculo Esquelético/fisiologia , Baclofeno/toxicidade , Pilocarpina , Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Convulsões/induzido quimicamente
2.
J Toxicol Sci ; 49(5): 231-240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692910

RESUMO

Drug-induced convulsions are a major challenge to drug development because of the lack of reliable biomarkers. Using machine learning, our previous research indicated the potential use of an index derived from heart rate variability (HRV) analysis in non-human primates as a biomarker for convulsions induced by GABAA receptor antagonists. The present study aimed to explore the application of this methodology to other convulsants and evaluate its specificity by testing non-convulsants that affect the autonomic nervous system. Telemetry-implanted males were administered various convulsants (4-aminopyridine, bupropion, kainic acid, and ranolazine) at different doses. Electrocardiogram data gathered during the pre-dose period were employed as training data, and the convulsive potential was evaluated using HRV and multivariate statistical process control. Our findings show that the Q-statistic-derived convulsive index for 4-aminopyridine increased at doses lower than that of the convulsive dose. Increases were also observed for kainic acid and ranolazine at convulsive doses, whereas bupropion did not change the index up to the highest dose (1/3 of the convulsive dose). When the same analysis was applied to non-convulsants (atropine, atenolol, and clonidine), an increase in the index was noted. Thus, the index elevation appeared to correlate with or even predict alterations in autonomic nerve activity indices, implying that this method might be regarded as a sensitive index to fluctuations within the autonomic nervous system. Despite potential false positives, this methodology offers valuable insights into predicting drug-induced convulsions when the pharmacological profile is used to carefully choose a compound.


Assuntos
4-Aminopiridina , Frequência Cardíaca , Aprendizado de Máquina , Convulsões , Animais , Masculino , Convulsões/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , 4-Aminopiridina/efeitos adversos , Ácido Caínico/toxicidade , Convulsivantes/toxicidade , Ranolazina , Bupropiona/toxicidade , Bupropiona/efeitos adversos , Eletrocardiografia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Telemetria , Biomarcadores
3.
ALTEX ; 39(4): 560-582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502629

RESUMO

Drug-induced neurotoxicity is a leading cause of safety-related attrition for therapeutics in clinical trials, often driven by poor predictivity of preclinical in vitro and in vivo models of neurotoxicity. Over a dozen different iPSC-derived 3D spheroids have been described in recent years, but their ability to predict neurotoxicity in patients has not been evaluated nor compared with the predictive power of nonclinical species. To assess the predictive capabilities of human iPSC-derived neural spheroids (microBrains), we used 84 structurally diverse pharmaceuticals with robust clinical and pre-clinical datasets with varying degrees of seizurogenic and neurodegenerative liability. Drug-induced changes in neural viability and phenotypic calcium bursts were assessed using 7 endpoints based on calcium oscillation profiles and cel-lular ATP levels. These endpoints, normalized by therapeutic exposure, were used to build logistic regression models to establish endpoint cutoffs and evaluate probability for clinical neurotoxicity. The neurotoxicity score calculated from the logistic regression model could distinguish neurotoxic from non-neurotoxic clinical molecules with a specificity as high as 93.33% and a sensitivity of 53.49%, demonstrating a very low false positive rate for the prediction of seizures, convulsions, and neurodegeneration. In contrast, nonclinical species showed a higher sensitivity (75%) but much lower specificity (30.4%). The neural spheroids demonstrated higher likelihood ratio positive and inverse likelihood ratio neg-ative values compared with nonclinical safety studies. This assay has the potential to be used as a predictive assay to detect neurotoxicity in early drug discovery, aiding in the early identification of compounds that eventually may fail due to neurotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes Neurotóxicas , Humanos , Síndromes Neurotóxicas/etiologia , Convulsões/induzido quimicamente , Sinalização do Cálcio , Preparações Farmacêuticas
4.
J Pharmacol Toxicol Methods ; 112: 107127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34619314

RESUMO

Drug-induced convulsion is a severe adverse event; however, no useful biomarkers for it have been discovered. We propose a new method for predicting drug-induced convulsions in monkeys based on heart rate variability (HRV) and a machine learning technique. Because autonomic nervous activities are altered around the time of a convulsion and such alterations affect HRV, they may be predicted by monitoring HRV. In the proposed method, anomalous changes in multiple HRV parameters are monitored by means of a convulsion prediction model, and convulsion alarms are issued when abnormal changes in HRV are detected. The convulsion prediction model is constructed based on multivariate statistical process control (MSPC), a well-known anomaly detection algorithm in machine learning. In this study, HRV data were collected from four cynomolgus monkeys administered with multiple doses of pentylenetetrazol (PTZ) and picrotoxin (PTX), which are GABA receptor antagonists, as convulsant agents. In addition, low doses of pilocarpine (PILO) were administered as a negative control. Twelve HRV parameters in three hours after drug administration were monitored by means of the prediction model. The number and duration of convulsion alarms from HRV increased at medium and high doses of PTZ and PTX (1/3 or 1/4 of convulsion dose). On the other hand, the frequency of convulsion alarms did not increase with PILO. Although vomiting was observed in all drugs, convulsion alarms were not associated with the vomiting. Thus, convulsion alarms can be used as a biomarker for convulsions induced by GABA receptor antagonists.


Assuntos
Aprendizado de Máquina , Convulsões , Animais , Antagonistas GABAérgicos , Frequência Cardíaca , Macaca fascicularis , Convulsões/induzido quimicamente
5.
Front Neural Circuits ; 15: 670189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897380

RESUMO

Subarachnoid hemorrhage (SAH) is a life-threatening condition that can also lead to permanent paralysis. However, the mechanisms that underlying neurobehavioral deficits after SAH have not been fully elucidated. As theta burst stimulation (TBS) can induce long-term potentiation (LTP) in the motor cortex, we tested its potential as a functional evaluation tool after experimentally induced SAH. Motor cortical inter-neuronal excitability was evaluated in anesthetized rats after 200 Hz-quadripulse TBS (QTS5), 200 Hz-quadripulse stimulation (QPS5), and 400 Hz-octapulse stimulation (OPS2.5). Furthermore, correlation between motor cortical LTP and N-methyl-D-aspartate-receptor activation was evaluated using MK-801, a NMDA-receptor antagonist. We evaluated inhibition-facilitation configurations [interstimulus interval: 3 ms; short-latency intracortical inhibition (SICI) and 11 ms; intracortical facilitation (ICF)] with paired electrical stimulation protocols and the effect of TBS paradigm on continuous recording of motor-evoked potentials (MEPs) for quantitative parameters. SAH and MK-801 completely blocked ICF, while SICI was preserved. QTS5, QPS5, and OPS2.5 facilitated continuous MEPs, persisting for 180 min. Both SAH and MK-801 completely blocked MEP facilitations after QPS5 and OPS2.5, while MEP facilitations after QTS5 were preserved. Significant correlations were found among neurological scores and 3 ms-SICI rates, 11 ms-ICF rates, and MEP facilitation rates after 200 Hz-QTS5, 7 days after SAH (R2 = 0.6236; r = -0.79, R2 = 0.6053; r = -0.77 and R2 = 0.9071; r = 0.95, p < 0.05, respectively). Although these findings need to be verified in humans, our study demonstrates that the neurophysiological parameters 3 ms-SICI, 11 ms-ICF, and 200 Hz-QTS5-MEPs may be useful surrogate quantitative biomarkers for assessing inter-neuronal function after SAH.


Assuntos
Hemorragia Subaracnóidea , Estimulação Magnética Transcraniana , Animais , Potencial Evocado Motor , Potenciação de Longa Duração , Inibição Neural , Ratos
6.
PLoS One ; 15(4): e0231905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315372

RESUMO

Myocardial fibrosis is often associated with cardiac hypertrophy; indeed, fibrosis is one of the most critical factors affecting prognosis. We aimed to identify the molecules involved in promoting fibrosis under hypertrophic stimuli. We previously established a rat model of cardiac hypertrophy by pulmonary artery banding, in which approximately half of the animals developed fibrosis in the right ventricle. Here, we first comprehensively analyzed mRNA expression in the right ventricle with or without fibrosis in pulmonary artery banding model rats by DNA microarray analysis (GSE141650 at NCBI GEO). The expression levels of 19 genes were up-regulated more than 1.5-fold in fibrotic hearts compared with non-fibrotic hearts. Among them, fibrosis growth factor (FGF) 23 showed one of the biggest increases in expression. Real-time PCR analysis also revealed that, among the FGF receptor (FGFR) family, FGFR1 was highly expressed in fibrotic hearts. We then found that FGF23 was expressed predominantly in cardiomyocytes, while FGFR1 was predominantly expressed in fibroblasts in the rat ventricle. Next, we added FGF23 and transforming growth factor (TGF)-ß1 (10-50 ng/mL of each) to isolated fibroblasts from normal adult rat ventricles and cultured them for three days. While FGF23 itself did not directly affect the expression levels of any fibrosis-related mRNAs, FGF23 enhanced the effect of TGF-ß1 on increasing the expression levels of α-smooth muscle actin (α-SMA) mRNA. This increase in xx-SMA mRNA levels due to the combination of TGF-ß1 and FGF23 was attenuated by the inhibition of FGFR1 or the knockdown of FGFR1 in fibroblasts. Thus, FGF23 synergistically promoted the activation of fibroblasts with TGF-ß1, transforming fibroblasts into myofibroblasts via FGFR1. Thus, we identified FGF23 as a paracrine factor secreted from cardiomyocytes to promote cardiac fibrosis under conditions in which TGF-ß1 is activated. FGF23 could be a possible target to prevent fibrosis following myocardial hypertrophy.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Cardiopatias/patologia , Fator de Crescimento Transformador beta1/farmacologia , Regulação para Cima/efeitos dos fármacos , Actinas/genética , Actinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibrose , Cardiopatias/metabolismo , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
7.
Plant Signal Behav ; 15(11): 1802553, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752971

RESUMO

Acute and chronic arsenic (As) toxicity is a global health issue affecting millions of people, which leads to inactivation of over 200 enzymes, particularly those involved in cellular energy pathways and DNA synthesis and repair. The fern Pteris vittata acts as a hyperaccumulator of As and may be useful for phytoremediation to reduce disposal risks by utilizing metal-enriched plant biomass in energy and metal recovery. However, these ferns grow in limited environments and its transplantation and transport can be challenging. Therefore, we generated a transgenic Arabidopsis plant as a seed plant model, capable of accumulating As in their vacuole lumen. This was achieved by transforming the As-resistant bacterial As transporter, ArsB, via fusion with a organelle-targeting signal to the vacuolar membrane, N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs) protein, VAMP711. In this study, we developed the iVenus assay as a method for detecting whether the N- or C-terminus of a membrane protein is located on the cytoplasmic or exoplasmic side, and from the result of the iVenus assay, we generated the transgenic plant introduced N-terminal end of ArsB with VAMP711, localized to the central vacuolar membrane to accumulate As in the shoot and differentiation zone of root.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arsênio/metabolismo , Biodegradação Ambiental , Proteínas SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Pteris/genética , Pteris/metabolismo , Proteínas SNARE/genética , Vacúolos/metabolismo
8.
J Pharmacol Toxicol Methods ; 88(Pt 1): 46-55, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28688881

RESUMO

In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm2 ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry. In addition, the thicknesses of the skin layers at both sites were measured in drug-naïve rats. The abdominal skin showed more severe reactions to all phototoxic drugs than the back skin, whereas the minimal erythema dose in drug-naïve rats and skin concentrations of each drug were comparable between the sites. Furthermore, histopathological lesions and γ-H2AX-positive cells in the abdominal skin were detected in deeper layers than in the back skin. The stratum corneum and dermis in the abdominal skin were significantly thinner than in the back skin, indicating a difference in the depth of light penetration and potentially contributing to the site differences observed in sensitivity to phototoxicity. Gatifloxacin did not induce any phototoxic reactions at either site. In conclusion, the abdominal skin is more sensitive to drug-induced phototoxicity than the back skin and may represent a preferable site for irradiation in this rat phototoxicity model.


Assuntos
Abdome/patologia , Dorso/patologia , Dermatite Fototóxica/patologia , Pele/patologia , Luz Solar/efeitos adversos , Testes de Toxicidade Aguda/métodos , Abdome/efeitos da radiação , Administração Oral , Animais , Dorso/efeitos da radiação , Dermatite Fototóxica/etiologia , Modelos Animais de Doenças , Doxiciclina/farmacologia , Feminino , Fluoroquinolonas/farmacologia , Gatifloxacina , Histonas/metabolismo , Metoxaleno/farmacologia , Fosfoproteínas/metabolismo , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Pele/efeitos da radiação , Espectrometria de Massas em Tandem , Testes de Toxicidade Aguda/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA