Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
2.
Diabetes Obes Metab ; 23(9): 2009-2019, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33961344

RESUMO

Sodium-glucose co-transporter-2 inhibitors (SGLT2is) lower blood glucose and are used for treatment of type 2 diabetes. However, SGLT2is have been associated with increases in endogenous glucose production (EGP) by mechanisms that have been proposed to result from SGLT2i-mediated increases in circulating glucagon concentrations, but the relative importance of this effect is debated, and mechanisms possibly coupling SGLT2is to increased plasma glucagon are unclear. A direct effect on alpha-cell activity has been proposed, but data on alpha-cell SGLT2 expression are inconsistent, and studies investigating the direct effects of SGLT2 inhibition on glucagon secretion are conflicting. By contrast, alpha-cell sodium-glucose co-transporter-1 (SGLT1) expression has been found more consistently and appears to be more prominent, pointing to an underappreciated role for this transporter. Nevertheless, the selectivity of most SGLT2is does not support interference with SGLT1 during therapy. Paracrine effects mediated by secretion of glucagonotropic/static molecules from beta and/or delta cells have also been suggested to be involved in SGLT2i-induced increase in plasma glucagon, but studies are few and arrive at different conclusions. It is also possible that the effect on glucagon is secondary to drug-induced increases in urinary glucose excretion and lowering of blood glucose, as shown in experiments with glucose clamping where SGLT2i-associated increases in plasma glucagon are prevented. However, regardless of the mechanisms involved, the current balance of evidence does not support that SGLT2 plays a crucial role for alpha-cell physiology or that SGLT2i-induced glucagon secretion is important for the associated increased EGP, particularly because the increase in EGP occurs before any rise in plasma glucagon.


Assuntos
Diabetes Mellitus Tipo 2 , Preparações Farmacêuticas , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucagon , Glucose , Glucosídeos , Humanos , Sódio , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
3.
Int J Obes (Lond) ; 44(9): 1872-1883, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32317753

RESUMO

BACKGROUND/OBJECTIVES: Bile acids in plasma are elevated after bariatric surgery and may contribute to metabolic improvements, but underlying changes in bile flow are poorly understood. We assessed bilio-enteric flow of bile and plasma bile concentrations in individuals with Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG) surgery compared with matched non-surgical controls (CON). SUBJECTS/METHODS: Fifteen RYGB, 10 SG and 15 CON underwent 99Tc-mebrofenin cholescintigraphy combined with intake of a high-fat 111In-DTPA-labelled meal and frequent blood sampling. A 75Se-HCAT test was used to assess bile acid retention. RESULTS: After RYGB, gallbladder filling was decreased (p = 0.045 versus CON), basal flow of bile into the small intestine increased (p = 0.005), bile acid retention augmented (p = 0.021) and basal bile acid plasma concentrations elevated (p = 0.009). During the meal, foods passed unimpeded through the gastric pouch resulting in almost instant postprandial mixing of bile and foods, but the postprandial rise in plasma bile acids was brief and associated with decreased overall release of fibroblast growth factor-19 (FGF-19) compared with CON (p = 0.033). After SG, bile flow and retention were largely unaltered (p > 0.05 versus CON), but gastric emptying was accelerated (p < 0.001) causing earlier mixture of bile and foods also in this group. Neither basal nor postprandial bile acid concentrations differed between SG and CON. CONCLUSIONS: Bilio-enteric bile flow is markedly altered after RYGB resulting in changes in plasma concentrations of bile acids and FGF-19, whereas bile flow and plasma concentrations are largely unaltered after SG.


Assuntos
Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/metabolismo , Gastrectomia/estatística & dados numéricos , Derivação Gástrica/estatística & dados numéricos , Adulto , Ductos Biliares/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Período Pós-Prandial/fisiologia
4.
Int J Obes (Lond) ; 44(9): 1859-1871, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32015474

RESUMO

OBJECTIVES: Gastrointestinal hormones contribute to the beneficial effects of Roux-en-Y gastric bypass surgery (RYGB) on glycemic control. Secretin is secreted from duodenal S cells in response to low luminal pH, but it is unknown whether its secretion is altered after RYGB and if secretin contributes to the postoperative improvement in glycemic control. We hypothesized that secretin secretion increases after RYGB as a result of the diversion of nutrients to more distal parts of the small intestine, and thereby affects islet hormone release. METHODS: A specific secretin radioimmunoassay was developed, evaluated biochemically, and used to quantify plasma concentrations of secretin in 13 obese individuals before, 1 week after, and 3 months after RYGB. Distribution of secretin and its receptor was assessed by RNA sequencing, mass-spectrometry and in situ hybridization in human and rat tissues. Isolated, perfused rat intestine and pancreas were used to explore the molecular mechanism underlying glucose-induced secretin secretion and to study direct effects of secretin on glucagon, insulin, and somatostatin secretion. Secretin was administered alone or in combination with GLP-1 to non-sedated rats to evaluate effects on glucose regulation. RESULTS: Plasma postprandial secretin was more than doubled in humans after RYGB (P < 0.001). The distal small intestine harbored secretin expressing cells in both rats and humans. Glucose increased the secretion of secretin in a sodium-glucose cotransporter dependent manner when administered to the distal part but not into the proximal part of the rat small intestine. Secretin stimulated somatostatin secretion (fold change: 1.59, P < 0.05) from the perfused rat pancreas but affected neither insulin (P = 0.2) nor glucagon (P = 0.97) secretion. When administered to rats in vivo, insulin secretion was attenuated and glucagon secretion increased (P = 0.04), while blood glucose peak time was delayed (from 15 to 45 min) and gastric emptying time prolonged (P = 0.004). CONCLUSIONS: Glucose-sensing secretin cells located in the distal part of the small intestine may contribute to increased plasma concentrations observed after RYGB. The metabolic role of the distal S cells warrants further studies.


Assuntos
Células Enteroendócrinas , Derivação Gástrica , Glucose/metabolismo , Intestino Delgado/citologia , Animais , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/fisiologia , Masculino , Período Pós-Prandial/fisiologia , Ratos , Ratos Wistar
5.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443832

RESUMO

Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) are the two known bile acid (BA) sensitive receptors and are expressed in the intestine and liver as well as in extra-enterohepatic tissues. The physiological effects of extra-enterohepatic FXR/TRG5 remain unclear. Further, the extent BAs escape liver reabsorption and how they interact with extra-enterohepatic FXR/TGR5 is understudied. We investigated if hepatic BA reuptake differed between BAs agonistic for FXR and TGR5 compared to non-agonists in the rat. Blood was collected from the portal vein and inferior caval vein from anesthetized rats before and 5, 20, 30, and 40 min post stimulation with sulfated cholecystokinin-8. Plasma concentrations of 20 different BAs were assessed by liquid chromatography coupled to mass spectrometry. Total portal vein BA AUC was 3-4 times greater than in the vena cava inferior (2.7 ± 0.6 vs. 0.7 ± 0.2 mM x min, p < 0.01, n = 8) with total unconjugated BAs being 2-3-fold higher than total conjugated BAs (AUC 8-10 higher p < 0.05 for both). However, in both cases, absolute ratios varied greatly among different BAs. The average hepatic reuptake of BAs agonistic for FXR/TGR5 was similar to non-agonists. However, as the sum of non-agonist BAs in vena portae was 2-3-fold higher than the sum agonist (p < 0.05), the peripheral BA pool was composed mostly of non-agonist BAs. We conclude that hepatic BA reuptake varies substantially by type and does not favor FXR/TGR5 BAs agonists.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Animais , Ácidos e Sais Biliares/agonistas , Ácidos e Sais Biliares/genética , Colecistocinina/farmacologia , Intestinos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ratos
6.
Diabetologia ; 62(6): 1011-1023, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30903205

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter (SGLT) 2 inhibitors constitute a new class of glucose-lowering drugs, but they increase glucagon secretion, which may counteract their glucose-lowering effect. Previous studies using static incubation of isolated human islets or the glucagon-secreting cell line α-TC1 suggested that this results from direct inhibition of alpha cell SGLT1/2-activity. The aim of this study was to test whether the effects of SGLT2 on glucagon secretion demonstrated in vitro could be reproduced in a more physiological setting. METHODS: We explored the effect of SGLT2 activity on glucagon secretion using isolated perfused rat pancreas, a physiological model for glucagon secretion. Furthermore, we investigated Slc5a2 (the gene encoding SGLT2) expression in rat islets as well as in mouse and human islets and in mouse and human alpha, beta and delta cells to test for potential inter-species variations. SGLT2 protein content was also investigated in mouse, rat and human islets. RESULTS: Glucagon output decreased three- to fivefold within minutes of shifting from low (3.5 mmol/l) to high (10 mmol/l) glucose (4.0 ± 0.5 pmol/15 min vs 1.3 ± 0.3 pmol/15 min, p < 0.05). The output was unaffected by inhibition of SGLT1/2 with dapagliflozin or phloridzin or by addition of the SGLT1/2 substrate α-methylglucopyranoside, whether at low or high glucose concentrations (p = 0.29-0.99). Insulin and somatostatin secretion (potential paracrine regulators) was also unaffected. Slc5a2 expression and SGLT2 protein were marginal or below detection limit in rat, mouse and human islets and in mouse and human alpha, beta and delta cells. CONCLUSIONS/INTERPRETATION: Our combined data show that increased plasma glucagon during SGLT2 inhibitor treatment is unlikely to result from direct inhibition of SGLT2 in alpha cells, but instead may occur downstream of their blood glucose-lowering effects.


Assuntos
Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Western Blotting , Galinhas , Feminino , Glucagon/metabolismo , Imuno-Histoquímica , Insulina/metabolismo , Masculino , Camundongos , Ratos , Ratos Wistar , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Somatostatina/metabolismo
7.
Diabetologia ; 60(10): 2066-2075, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669086

RESUMO

AIMS/HYPOTHESIS: In humans, glucagon-like peptide-1 (GLP-1) is rapidly degraded by dipeptidyl peptidase-4 to a relatively stable metabolite, GLP-1(9-36)NH2, which allows measurement of GLP-1 secretion. However, little is known about the kinetics of the GLP-1 metabolite in mice. We hypothesised that the GLP-1 metabolite is rapidly degraded in this species by neutral endopeptidase(s) (NEP[s]). METHODS: We administered glucose, mixed meal or water orally to 256 mice, and took blood samples before and 2, 6, 10, 20, 30, 60 or 90 min after stimulation. To study the metabolism of the GLP-1 metabolite, i.v. GLP-1(9-36)NH2 (800 fmol) or saline (154 mmol/l NaCl) was administered to 160 mice, some of which had a prior injection of a selective NEP 24.11 ± inhibitor (candoxatril, 5 mg/kg) or saline. Blood was collected before and 1, 2, 4 and 12 min after GLP-1/saline injection. Plasma GLP-1 levels were analysed using a customised single-site C-terminal ELISA, two different two-site ELISAs and MS. RESULTS: GLP-1 secretion profiles after oral glucose administration differed markedly when assayed by C-terminal ELISA compared with sandwich ELISAs, with the former showing a far higher peak value and AUC. In mice injected with GLP-1(9-36)NH2, immunoreactive GLP-1 plasma levels peaked at approximately 75 pmol/l at 1 min when measured with sandwich ELISAs, returning to baseline (~20 pmol/l) after 12 min, but remained elevated using the C-terminal ELISA (~90 pmol/l at 12 min). NEP 24.11 inhibition by candoxatril significantly attenuated GLP-1(9-36)NH2 degradation in vivo and in vitro. MS identified GLP-1 fragments consistent with NEP 24.11 degradation. CONCLUSIONS/INTERPRETATION: In mice, the GLP-1 metabolite is eliminated within a few minutes owing to endoproteolytic cleavage by NEP 24.11. Therefore, accurate measurement of GLP-1 secretion in mice requires assays for NEP 24.11 metabolites. Conventional sandwich ELISAs are inadequate because of endoproteolytic cleavage of the dipeptidyl peptidase-4-generated metabolite.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/sangue , Período Pós-Prandial/fisiologia , Animais , Feminino , Glucose/farmacologia , Indanos/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos , Neprilisina/antagonistas & inibidores , Período Pós-Prandial/efeitos dos fármacos , Propionatos/farmacologia , Inibidores de Proteases/farmacologia
8.
Am J Physiol Endocrinol Metab ; 313(3): E284-E291, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28420649

RESUMO

Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from the gastrointestinal tract. It is best known for its glucose-dependent insulinotropic effects. GLP-1 is secreted in its intact (active) form (7-36NH2) but is rapidly degraded by the dipeptidyl peptidase 4 (DPP-4) enzyme, converting >90% to the primary metabolite (9-36NH2) before reaching the targets via the circulation. Although originally thought to be inactive or antagonistic, GLP-1 9-36NH2 may have independent actions, and it is therefore relevant to be able to measure it. Because reliable assays were not available, we developed a sandwich ELISA recognizing both GLP-1 9-36NH2 and nonamidated GLP-1 9-37. The ELISA was validated using analytical assay validation guidelines and by comparing it to a subtraction-based method, hitherto employed for estimation of GLP-1 9-36NH2 Its accuracy was evaluated from measurements of plasma obtained during intravenous infusions (1.5 pmol × kg-1 × min-1) of GLP-1 7-36NH2 in healthy subjects and patients with type 2 diabetes. Plasma levels of the endogenous GLP-1 metabolite increased during a meal challenge in patients with type 2 diabetes, and treatment with a DPP-4 inhibitor fully blocked its formation. Accurate measurements of the GLP-1 metabolite may contribute to understanding its physiology and role of GLP-1 in diabetes.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Fragmentos de Peptídeos/análise , Peptídeos/análise , Área Sob a Curva , Diabetes Mellitus Tipo 2/sangue , Inibidores da Dipeptidil Peptidase IV/farmacologia , Peptídeo 1 Semelhante ao Glucagon/análise , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Peptídeos/sangue , Peptídeos/efeitos dos fármacos , Peptídeos/metabolismo , Reprodutibilidade dos Testes
9.
Am J Physiol Endocrinol Metab ; 311(2): E302-9, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27245336

RESUMO

Glucagon is a metabolically important hormone, but many aspects of its physiology remain obscure, because glucagon secretion is difficult to measure in mice and rats due to methodological inadequacies. Here, we introduce and validate a low-volume, enzyme-linked immunosorbent glucagon assay according to current analytical guidelines, including tests of sensitivity, specificity, and accuracy, and compare it, using the Bland-Altman algorithm and size-exclusion chromatography, with three other widely cited assays. After demonstrating adequate performance of the assay, we measured glucagon secretion in response to intravenous glucose and arginine in anesthetized mice (isoflurane) and rats (Hypnorm/midazolam). Glucose caused a long-lasting suppression to very low values (1-2 pmol/l) within 2 min in both species. Arginine stimulated secretion 8- to 10-fold in both species, peaking at 1-2 min and returning to basal levels at 6 min (mice) and 12 min (rats). d-Mannitol (osmotic control) was without effect. Ketamine/xylazine anesthesia in mice strongly attenuated (P < 0.01) α-cell responses. Chromatography of pooled plasma samples confirmed the accuracy of the assay. In conclusion, dynamic analysis of glucagon secretion in rats and mice with the novel accurate sandwich enzyme-linked immunosorbent assay revealed extremely rapid and short-lived responses to arginine and rapid and profound suppression by glucose.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Anestésicos Dissociativos/farmacologia , Animais , Arginina/farmacologia , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Feminino , Glucagon/análise , Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Glucose/farmacologia , Hipnóticos e Sedativos/farmacologia , Ketamina/farmacologia , Masculino , Manitol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Edulcorantes/farmacologia , Xilazina/farmacologia
10.
Clin Sci (Lond) ; 130(2): 79-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26637406

RESUMO

Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition.


Assuntos
Células Enteroendócrinas/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico
11.
Am J Physiol Gastrointest Liver Physiol ; 306(7): G622-30, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24525020

RESUMO

Nutrients often stimulate gut hormone secretion, but the effects of fructose are incompletely understood. We studied the effects of fructose on a number of gut hormones with particular focus on glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). In healthy humans, fructose intake caused a rise in blood glucose and plasma insulin and GLP-1, albeit to a lower degree than isocaloric glucose. Cholecystokinin secretion was stimulated similarly by both carbohydrates, but neither peptide YY3-36 nor glucagon secretion was affected by either treatment. Remarkably, while glucose potently stimulated GIP release, fructose was without effect. Similar patterns were found in the mouse and rat, with both fructose and glucose stimulating GLP-1 secretion, whereas only glucose caused GIP secretion. In GLUTag cells, a murine cell line used as model for L cells, fructose was metabolized and stimulated GLP-1 secretion dose-dependently (EC50 = 0.155 mM) by ATP-sensitive potassium channel closure and cell depolarization. Because fructose elicits GLP-1 secretion without simultaneous release of glucagonotropic GIP, the pathways underlying fructose-stimulated GLP-1 release might be useful targets for type 2 diabetes mellitus and obesity drug development.


Assuntos
Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestinos/efeitos dos fármacos , Administração Oral , Adulto , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Linhagem Celular , Colecistocinina/metabolismo , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Relação Dose-Resposta a Droga , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Feminino , Frutose/administração & dosagem , Frutose/metabolismo , Polipeptídeo Inibidor Gástrico/sangue , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Humanos , Insulina/sangue , Mucosa Intestinal/metabolismo , Ativação do Canal Iônico , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Método Simples-Cego , Fatores de Tempo , Adulto Jovem
12.
Acta Physiol (Oxf) ; 238(1): e13947, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755506

RESUMO

AIM: Postprandial secretion of the appetite-inhibiting hormones, glucagon-like peptide-1 (GLP-1), and peptide YY are reduced with obesity. It is unclear if the reduced secretion persists following weight loss (WL), if other appetite-inhibiting hormones are also reduced, and if so whether reduced secretion results from intrinsic changes in the gut. METHODS: To address whether WL may restore secretion of GLP-1 and other appetite-inhibiting hormones, we performed a gut perfusion study of the small intestine in diet-induced obese (DIO) rats after WL. A 20% weight loss (means ± SEM (g): 916 ± 53 vs. 703 ± 35, p < 0.01, n = 7) was induced by calorie restriction, and maintained stable for ≥7 days prior to gut perfusion to allow for complete renewal of enteroendocrine cells. Age-matched DIO rats were used as comparator. Several gut hormones were analyzed from the venous effluent, and gene expression was performed on gut tissue along the entire length of the intestine. RESULTS: Secretion of cholecystokinin, gastrin, glucose-dependent insulinotropic peptide, GLP-1, neurotensin, and somatostatin was not affected by WL during basal conditions (p ≥ 0.25) or in response to macronutrients and bile acids (p ≥ 0.14). Glucose absorption was indistinguishable following WL. The expression of genes encoding the studied peptides, macronutrient transporters (glucose, fructose, and di-/tripeptides) and bile acid receptors did also not differ between DIO and WL groups. CONCLUSIONS: These data suggest that the attenuated postprandial responses of GLP-1, as well as reduced responses of other appetite-inhibiting gut hormones, in people living with obesity may persist after weight loss and may contribute to their susceptibility for weight regain.


Assuntos
Apetite , Restrição Calórica , Ratos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Redução de Peso , Obesidade/metabolismo , Intestino Delgado , Glucose
13.
Front Endocrinol (Lausanne) ; 12: 694284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168620

RESUMO

Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.


Assuntos
Células L/fisiologia , Via Secretória/fisiologia , Animais , Endocrinologia/métodos , Humanos , Células L/metabolismo , Camundongos , Projetos de Pesquisa
14.
Endocrinology ; 162(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508122

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) activation is used in the treatment of diabetes and obesity; however, GLP-1 induces many other physiological effects with unclear mechanisms of action. To identify the cellular targets of GLP-1 and GLP-1 analogues, we generated a Glp1r.tdTomato reporter mouse expressing the reporter protein, tdTomato, in Glp1r-expressing cells. The reporter signal is expressed in all cells where GLP-1R promoter was ever active. To complement this, we histologically mapped tdTomato-fluorescence, and performed Glp-1r mRNA in situ hybridization and GLP-1R immunohistochemistry on the same tissues. In male mice, we found tdTomato signal in mucus neck, chief, and parietal cells of the stomach; Brunner's glands; small intestinal enteroendocrine cells and intraepithelial lymphocytes; and myenteric plexus nerve fibers throughout the gastrointestinal tract. Pancreatic acinar-, ß-, and δ cells, but rarely α cells, were tdTomato-positive, as were renal arteriolar smooth muscle cells; endothelial cells of the liver, portal vein, and endocardium; aortal tunica media; and lung type 1 and type 2 pneumocytes. Some thyroid follicular and parafollicular cells displayed tdTomato expression, as did tracheal cartilage chondrocytes, skin fibroblasts, and sublingual gland mucus cells. In conclusion, our reporter mouse is a powerful tool for mapping known and novel sites of GLP-1R expression in the mouse, thus enhancing our understanding of the many target cells and effects of GLP-1 and GLP-1R agonists.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Imunofluorescência , Expressão Gênica , Genes Reporter/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Tecidual
15.
Front Endocrinol (Lausanne) ; 12: 681116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084153

RESUMO

Background: Altered bile acid (BA) turnover has been suggested to be involved in the improved glucose regulation after Roux-en-Y gastric bypass (RYGB), possibly via stimulation of GLP-1 secretion. We investigated the role of exogenous as well as endogenous BAs for GLP-1 secretion after RYGB by administering chenodeoxycholic acid (CDCA) and the BA sequestrant colesevelam (COL) both in the presence and the absence of a meal stimulus. Methods: Two single-blinded randomized cross-over studies were performed. In study 1, eight RYGB operated participants ingested 200 ml water with 1) CDCA 1.25 g or 2) CDCA 1.25 g + colesevelam 3.75 g on separate days. In study 2, twelve RYGB participants ingested on separate days a mixed meal with addition of 1) CDCA 1.25 g, 2) COL 3.75 g or 3) COL 3.75 g × 2, or 4) no additions. Results: In study 1, oral intake of CDCA increased circulating BAs, GLP-1, C-peptide, glucagon, and neurotensin. Addition of colesevelam reduced all responses. In study 2, addition of CDCA enhanced meal-induced increases in plasma GLP-1, glucagon and FGF-19 and lowered plasma glucose and C-peptide concentrations, while adding colesevelam lowered circulating BAs but did not affect meal-induced changes in plasma glucose or measured gastrointestinal hormones. Conclusion: In RYGB-operated persons, exogenous CDCA enhanced meal-stimulated GLP-1 and glucagon secretion but not insulin secretion, while the BA sequestrant colesevelam decreased CDCA-stimulated GLP-1 secretion but did not affect meal-stimulated GLP-1, C-peptide or glucagon secretion, or glucose tolerance. These findings suggest a limited role for endogenous bile acids in the acute regulation of postprandial gut hormone secretion or glucose metabolism after RYGB.


Assuntos
Ácidos e Sais Biliares/sangue , Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/metabolismo , Obesidade Mórbida/cirurgia , Adulto , Glicemia , Peptídeo C/sangue , Cloridrato de Colesevelam/uso terapêutico , Feminino , Glucagon/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Neurotensina/sangue , Obesidade Mórbida/sangue , Obesidade Mórbida/tratamento farmacológico , Período Pós-Prandial , Método Simples-Cego
16.
Front Endocrinol (Lausanne) ; 12: 690387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421821

RESUMO

The molecular sensors underlying nutrient-stimulated GLP-1 secretion are currently being investigated. Peripheral administration of melanocortin-4 receptor (MC4R) agonists have been reported to increase GLP-1 plasma concentrations in mice and humans but it is unknown whether this effect results from a direct effect on the GLP-1 secreting L-cells in the intestine, from other effects in the intestine or from extra-intestinal effects. We investigated L-cell expression of MC4R in mouse and human L-cells by reanalyzing publicly available RNA sequencing databases (mouse and human) and by RT-qPCR (mouse), and assessed whether administration of MC4R agonists to a physiologically relevant gut model, isolated perfused mouse and rat small intestine, would stimulate GLP-1 secretion or potentiate glucose-stimulated secretion. L-cell MC4R expression was low in mouse duodenum and hardly detectable in the ileum and MC4R expression was hardly detectable in human L-cells. In isolated perfused mouse and rat intestine, neither intra-luminal nor intra-arterial administration of NDP-alpha-MSH, a potent MC4R agonist, had any effect on GLP-1 secretion (P ≥0.98, n = 5-6) from the upper or lower-half of the small intestine in mice or in the lower half in rats. Furthermore, HS014-an often used MC4R antagonist, which we found to be a partial agonist-did not affect the glucose-induced GLP-1 response in the rat, P = 0.62, n = 6). Studies on transfected COS7-cells confirmed bioactivity of the used compounds and that concentrations employed were well within in the effective range. Our combined data therefore suggest that MC4R-activated GLP-1 secretion in rodents either exclusively occurs in the colon or involves extra-intestinal signaling.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Intestino Delgado/metabolismo , Células L/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Bases de Dados Factuais , Humanos , Intestino Delgado/efeitos dos fármacos , Células L/efeitos dos fármacos , Masculino , Camundongos , Ratos , Ratos Wistar , Receptor Tipo 4 de Melanocortina/agonistas , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/farmacologia
17.
Acta Physiol (Oxf) ; 229(3): e13464, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145704

RESUMO

AIM: It is debated whether the inhibition of glucagon secretion by glucose results from direct effects of glucose on the α-cell (intrinsic regulation) or by paracrine effects exerted by beta- or delta-cell products. METHODS: To study this in a more physiological model than isolated islets, we perfused isolated rat pancreases and measured glucagon, insulin and somatostatin secretion in response to graded increases in perfusate glucose concentration (from 3.5 to 4, 5, 6, 7, 8, 10, 12 mmol/L) as well as glucagon responses to blockage/activation of insulin/GABA/somatostatin signalling with or without addition of glucose. RESULTS: Glucagon secretion was reduced by about 50% (compared to baseline secretion at 3.5 mmol/L) within minutes after increasing glucose from 4 to 5 mmol/L (P < .01, n = 13). Insulin secretion was increased minimally, but significantly, compared to baseline (3.5 mmol/L) at 4 mmol/L, whereas somatostatin secretion was not significantly increased from baseline until 7 mmol/L. Hereafter secretion of both increased gradually up to 12 mmol/L glucose. Neither recombinant insulin (1 µmol/L), GABA (300 µmol/L) or the insulin-receptor antagonist S961 (at 1 µmol/L) affected basal (3.5 mmol/L) or glucose-induced (5.0 mmol/L) attenuation of glucagon secretion (n = 7-8). Somatostatin-14 attenuated glucagon secretion by ~ 95%, and blockage of somatostatin-receptor (SSTR)-2 or combined blockage of SSTR-2, -3 and -5 by specific antagonists increased glucagon output (at 3.5 mmol/L glucose) and prevented glucose-induced (from 3.5 to 5.0 mmol/L) suppression of secretion. CONCLUSION: Somatostatin is a powerful and tonic inhibitor of glucagon secretion from the rat pancreas and is required for glucose to inhibit glucagon secretion.


Assuntos
Glucagon/sangue , Glucose/administração & dosagem , Pâncreas/fisiologia , Somatostatina/fisiologia , Animais , Insulina/sangue , Perfusão , Ratos
18.
Nat Commun ; 11(1): 4033, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820167

RESUMO

Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs.


Assuntos
Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Idoso , Animais , Linhagem Celular , Desenho de Fármacos , Feminino , Glicosilação , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estabilidade Proteica , Ratos , Suínos
19.
Mol Metab ; 42: 101080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32937194

RESUMO

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Assuntos
Aminoácidos/metabolismo , Fígado Gorduroso/fisiopatologia , Glucagon/metabolismo , Adulto , Animais , Glicemia/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucagon/fisiologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Ureia/metabolismo
20.
J Vis Exp ; (144)2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30882791

RESUMO

The gut is the largest endocrine organ of the body, producing more than 15 different peptide hormones that regulate appetite and food intake, digestion, nutrient absorption and distribution, and post-prandial glucose excursions. Understanding the molecular mechanisms that regulate gut hormone secretion is fundamental for understanding and translating gut hormone physiology. Traditionally, the mechanisms underlying gut hormone secretion are either studied in vivo (in experimental animals or humans) or using gut hormone-secreting primary mucosal cell cultures or cell lines. Here, we introduce an isolated perfused rat small intestine as an alternative method for studying gut hormone secretion. The virtues of this model are that it relies on the intact gut, meaning that it recapitulates most of the physiologically important parameters responsible for the secretion in in vivo studies, including mucosal polarization, paracrine relationships and routes of perfusion/stimulus exposure. In addition, and unlike in vivo studies, the isolated perfused rat small intestine allows for almost complete experimental control and direct assessment of secretion. In contrast to in vitro studies, it is possible to study both the magnitude and the dynamics of secretion and to address important questions, such as what stimuli cause secretion of different gut hormones, from which side of the gut (luminal or vascular) is secretion stimulated, and to analyze in detail molecular sensors underlying the secretory response. In addition, the preparation is a powerful model for the study of intestinal absorption and details regarding the dynamics of intestinal absorption including the responsible transporters.


Assuntos
Hormônios Gastrointestinais/metabolismo , Intestino Delgado/metabolismo , Animais , Transporte Biológico , Humanos , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA