RESUMO
Epidemiological studies show that cardiovascular events related to platelet hyperactivity remain the leading causes of death among multiple sclerosis (MS) patients. Quantitative or structural changes of platelet cytoskeleton alter their morphology and function. Here, we demonstrated, for the first time, the structural changes in MS platelets that may be related to their hyperactivity. MS platelets were found to form large aggregates compared to control platelets. In contrast to the control, the images of overactivated, irregularly shaped MS platelets show changes in the cytoskeleton architecture, fragmented microtubule rings. Furthermore, MS platelets have long and numerous pseudopodia rich in actin filaments. We showed that MS platelets and megakaryocytes, overexpress ß1-tubulin and ß-actin mRNAs and proteins and have altered post-translational modification patterns. Moreover, we identified two previously undisclosed mutations in the gene encoding ß1-tubulin in MS. We propose that the demonstrated structural changes of platelet cytoskeleton enhance their ability to adhere, aggregate, and degranulate fueling the risk of adverse cardiovascular events in MS.
Assuntos
Plaquetas , Proteínas do Citoesqueleto , Citoesqueleto , Esclerose Múltipla , Tubulina (Proteína) , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/sangue , Plaquetas/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Feminino , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Adulto , Masculino , Pessoa de Meia-Idade , Actinas/metabolismo , Actinas/genética , Megacariócitos/metabolismo , Megacariócitos/patologia , Processamento de Proteína Pós-Traducional , MutaçãoRESUMO
BACKGROUND: This study was conducted to find the best concentration of cholesterol-loaded cyclodextrin (CLC) which has a positive impact on canine post thaw semen quality. Three different concentrations of CLC (0.83 mg/ml; 1.66 mg/ml; 3.32 mg/ml) and 2-hydroxylpropyl-beta-cyclodextrin (HBCD) (1.66 mg/ml) were used in addition to cryopreservation extender and compared with the control after thawing. Samples were assessed using computer-assisted semen analyzer (CASA), flow cytometry, fluorimeter by measuring the fluorescence anisotropy (ANISO) and determining the generalized membrane polarization (GP). RESULTS: An addition of 0.83 mg/ml CLC significantly increased the percentage of progressive motile (PROG) and rapid spermatozoa (RAP) (P < 0.05). 1.66 mg/ml HBCD decreased progressive motility of spermatozoa and population with rapid movement relative to the control (P < 0.05). Furthermore, the groups with an addition of 1.66 mg/ml and 3.32 mg/ml of CLC, as well as the group with only cyclodextrin, increased percentage of dead spermatozoa without lipid peroxidation and decreased percentage of viable spermatozoa without LPO which was lower in these groups than in the control (P < 0.05). Other sperm parameters assessed on flow cytometer were not significantly different. The addition of CLC at 0.83 mg/ml and 3.32 mg/ml concentrations and 1.66 mg/ml of HBCD caused an increase in ANISO measured at 23 ºC (P < 0.05). CONCLUSIONS: In conclusion, the results suggest that increasing cholesterol in the plasma membrane of canine spermatozoa can improve their freezability. However, only low concentrations of CLC may improve semen quality after thawing without adversely affecting other parameters.
Assuntos
Ciclodextrinas , Preservação do Sêmen , Animais , Cães , Masculino , Ciclodextrinas/farmacologia , Sêmen , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Criopreservação/veterinária , Criopreservação/métodos , ColesterolRESUMO
Sea buckthorn and Japanese knotweed are known in many traditional medicine systems to be a great source of bioactive substances. This research aims to compare the bioactivity and protective effects of the phenolic extracts of leaves from sea buckthorn and roots and leaves from the Japanese knotweed on erythrocytes. The polyphenol composition of the extract was analyzed using UPLC-PDA-ESI-MS/MS. The extracts' toxicity and impact on the erythrocytes' osmotic fragility were measured spectrophotometrically. The antioxidant activity was determined based on the inhibition of oxidation of erythrocytes and their membrane induced by 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH),measured spectrophotometrically and using fluorimetry. To find the possible mechanism of the extracts' action, extract-modified cells were observed under a microscope, and the potential localization of the extract's phytochemical composition was checked using fluorescent probes. The results showed that the used extracts are not toxic to erythrocytes, increase their osmotic resistance, and successfully protect them against free radicals. Extract components localize on the outer part of the membrane, where they can scavenge the free radicals from the environment. Altogether, the presented extracts can greatly protect living organisms against free radicals and can be used to support the treatment of diseases caused by excess free radicals.
Assuntos
Membrana Eritrocítica , Hippophae , Extratos Vegetais , Polifenóis , Hippophae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Polifenóis/farmacologia , Polifenóis/química , Membrana Eritrocítica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Folhas de Planta/química , Animais , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Fragilidade Osmótica/efeitos dos fármacosRESUMO
Nanoparticles are extremely promising components that are used in diagnostics and medical therapies. Among them, silica nanoparticles are ultrafine materials that, due to their unique physicochemical properties, have already been used in biomedicine, for instance, in cancer therapy. The aim of this study was to investigate the cytotoxicity of three types of nanoparticles (SiO2, SiO2-SH, and SiO2-COOH) in relation to red blood cells, as well as the impact of silicon dioxide nanoparticles on biological membranes and liposome models of membranes. The results obtained prove that hemolytic toxicity depends on the concentration of nanoparticles and the incubation period. Silica nanoparticles have a marginal impact on the changes in the osmotic resistance of erythrocytes, except for SiO2-COOH, which, similarly to SiO2 and SiO2-SH, changes the shape of erythrocytes from discocytes mainly towards echinocytes. What is more, nanosilica has an impact on the change in fluidity of biological and model membranes. The research gives a new view of the practical possibilities for the use of large-grain nanoparticles in biomedicine.
Assuntos
Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Nanopartículas/química , Eritrócitos , Membrana Celular , MembranasRESUMO
OBJECTIVE: The pathogenesis of schizophrenia is multidimensional and intensively studied. The gut-brain axis disturbances might play a significant role in the development of schizophrenia. METHODS: We compared the gut microbiota of 53 individuals with schizophrenia and 58 healthy controls, using the 16S rRNA sequencing method. Individuals with schizophrenia were assessed using the following scales: the Positive and Negative Syndrome Scale, the Calgary Depression Scale for Schizophrenia, the Social and Occupational Functioning Assessment Scale and the Repeatable Battery for the Assessment of Neuropsychological Status. RESULTS: No significant between-group differences in α-diversity measures were observed. Increased abundance of Lactobacillales (order level), Bacilli (class level) and Actinobacteriota (phylum level) were found in individuals with schizophrenia regardless of potential confounding factors, and using two independent analytical approaches (the distance-based redundancy analysis and the generalised linear model analysis). Additionally, significant correlations between various bacterial taxa (the Bacteroidia class, the Actinobacteriota phylum, the Bacteroidota phylum, the Coriobacteriales order and the Coriobacteria class) and clinical manifestation (the severity of negative symptoms, performance of language abilities, social and occupational functioning) were observed. CONCLUSIONS: The present study indicates that gut microbiota alterations are present in European patients with schizophrenia. The abundance of certain bacterial taxa might be associated with the severity of negative symptoms, cognitive performance and general functioning. Nonetheless, additional studies are needed before the translation of our results into clinical practice.
Assuntos
Microbioma Gastrointestinal , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Pacientes Ambulatoriais , Estudos de Casos e Controles , RNA Ribossômico 16S/genéticaRESUMO
The term "nanosilica" refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 µg/mL and higher they could disturb redox balance and stimulate cell migration.
Assuntos
Nanopartículas , Dióxido de Silício , Apoptose , Células Endoteliais , Humanos , Nanopartículas/química , Necrose , Dióxido de Silício/químicaRESUMO
The aim of this work is to determine the biological activity of ellagitannins rich extracts from leaves of raspberry (Rubus idaeus L.) and wild strawberry (Fragaria vesca L.) in relation to cells and cell membranes. Detailed qualitative and quantitative analysis of phenolic compounds of the extract was made using chromatographic methods. Cytotoxic and antioxidant activities of tested extracts in relation to erythrocytes and human vascular endothelial cells (HMEC-1) were determined by using fluorimetric and spectrophotometric methods. In order to establish the influence of the extracts on the physical properties of the membrane, such as osmotic resistance and erythrocytes shapes, mobility and/or hydration of polar heads and fluidity of hydrocarbon chains of membrane lipids, microscopic and spectroscopic methods were used. The results showed that the extracts are non-toxic for erythrocytes and HMEC-1 cells (up to concentration of 50 µg/mL), but they effectively protect cells and their membranes against oxidative damage. The increase in osmotic resistance of erythrocytes, formation of echinocytes and changes only in the polar part of the membrane caused by the extracts demonstrate their location mainly in the hydrophilic part of the membrane. The results indicate that tested extracts have high biological activities and may be potentially used in delaying the ageing process of organisms and prevention of many diseases, especially those associated with oxidative stress.
Assuntos
Fragaria , Rubus , Antioxidantes/química , Antioxidantes/farmacologia , Células Endoteliais , Eritrócitos , Fragaria/química , Humanos , Taninos Hidrolisáveis , Lipídeos de Membrana , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rubus/químicaRESUMO
Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.
Assuntos
Células Endoteliais/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Dióxido de Silício/administração & dosagem , Sobrevivência Celular , Humanos , Nanopartículas/química , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Propriedades de SuperfícieRESUMO
The economy is a system of complex interactions. The COVID-19 pandemic strongly influenced economies, particularly through introduced restrictions, which formed a completely new economic environment. The present work focuses on the changes induced by the COVID-19 epidemic on the correlation network structure. The analysis is performed on a representative set of USA companies-the S&P500 components. Four different network structures are constructed (strong, weak, typically, and significantly connected networks), and the rank entropy, cycle entropy, averaged clustering coefficient, and transitivity evolution are established and discussed. Based on the mentioned structural parameters, four different stages have been distinguished during the COVID-19-induced crisis. The proposed network properties and their applicability to a crisis-distinguishing problem are discussed. Moreover, the optimal time window problem is analysed.
RESUMO
Interactions of tributyltin (TBTA) and triphenyltin (TPhTA) 2-[4 (dimethylamino)phenylazo]benzoates, showing promising cytostatic activity against tumor cells, with erythrocytes and with erythrocyte membranes and model lipid membranes have been investigated. The effect of TBTA and TPhTA on the erythrocyte and its model membrane was investigated by the microscopic and spectroscopic methods. Interaction of tin complexes with the membrane was determined on the basis of hemolytic activity, changes induced in the shape of erythrocytes, as well as physicochemical parameters of the membrane, such as fluidity. The studies showed that the compounds in higher concentration induce hemolysis; however, TBTA is more toxic than TPhTA. Both TBTA and TPhTA induce morphological alterations in red blood cells-from discocytes to spherocytes and from discocytes to echinocytes. The results suggest that investigated complexes interact with the erythrocyte membrane, change its properties, and probably locate themselves in the hydrophilic part of the membrane, which agrees with conclusions drawn from investigation of erythrocyte membranes and model lipid membranes with the help of fluorescence and infrared spectroscopy.
Assuntos
Membrana Celular/química , Eritrócitos/química , Animais , Hemólise , Humanos , Compostos Orgânicos de Estanho/química , Compostos de Trialquitina/químicaRESUMO
The studies were designed to determine the polyphenolic composition and biological activity of extracts from fruits (SFE) and leaves (SLE) of Saskatoon (Amelanchier alnifolia Nutt.) in relation to erythrocyte membranes. A detailed quantitative and qualitative analysis of extracts was conducted, using the chro- matographic (UPLC-DAD, UPLC-ESI-MS) and spectrophotometric (Folin-Ciocalteu) methods. The biological activity of the extracts was investigated in relation to erythrocytes and isolated membranes of erythrocytes by using spectrophotometric, fluorimetric and microscopic methods and determined on the basis of hemolytic and antioxidant activity of the extracts and their impact on physical properties of the membrane such as: osmotic resistance, shape of erythrocytes, packing order of the polar head of lipids and fluidity of the membrane. The results showed that the tested extracts are rich sources of polyphenols, primarily from the group of flavonoids; in leaves dominating flavonols and anthocyanins in fruits. The SFE and SLE extracts to varying degree modify the physical properties of the erythrocyte membrane, causing formation of echinocytes, an increase in osmotic resistance and changes in the polar part of the membrane. Furthermore, the substances markedly protect erythrocytes and their membranes against oxidation induced by different physico-chemical factors. The findings indicate that the polyphenolic compounds contained in extracts of Saskatoon do not destroy biological membranes but effectively protect them against oxidation by way of interacting with the membrane surface. The extracts could effectively protect the organism and food products from the harmful effects of free radicals.
Assuntos
Antioxidantes/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Frutas/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Polifenóis/farmacologia , Rosaceae/química , Animais , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Citoproteção , Relação Dose-Resposta a Droga , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Hemólise/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Polifenóis/isolamento & purificação , Espectrofotometria , Sus scrofa , Espectrometria de Massas em TandemRESUMO
The high antioxidant capacity of chlorogenic acid (CGA) in respect to biological systems is commonly known, though the molecular mechanism underlying that activity is not known. The aim of the study was to determine that mechanism at the molecular and cell level, in particular with regard to the erythrocyte and the lipid phase of its membrane. The effect of CGA on erythrocytes and lipid membranes was studied using microscopic, spectrophotometric and electric methods. The biological activity of the acid was determined on the basis of changes in the physical parameters of the membrane, in particular its osmotic resistance and shapes of erythrocytes, polar head packing order and fluidity of erythrocyte membrane as well as capacity and resistivity of black lipid membrane (BLM). The study showed that CGA becomes localized mainly in the outer part of membrane, does not induce hemolysis or change the osmotic resistance of erythrocytes, and induces formation of echinocytes. The values of generalized polarization and fluorescence anisotropy indicate that CGA alters the hydrophilic region of the membrane, practically without changing the fluidity in the hydrophobic region. The assay of electric parameters showed that CGA causes decreased capacity and resistivity of black lipid membranes. The overall result is that CGA takes position mainly in the hydrophilic region of the membrane, modifying its properties. Such localization allows the acid to reduce free radicals in the immediate vicinity of the cell and hinders their diffusion into the membrane interior.
Assuntos
Ácido Clorogênico/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Lipídeos de Membrana/metabolismo , Animais , Antioxidantes/farmacologia , Forma Celular/efeitos dos fármacos , Membrana Eritrocítica/química , Eritrócitos/química , Eritrócitos/citologia , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Lipídeos de Membrana/isolamento & purificação , SuínosRESUMO
This study was conducted to determine the changes in chicken sperm plasma membranes fluidity and polarity as lipid packing arrangement induced by cholesterol-loaded cyclodextrin (CLC) and 2-hydroxypropyl-ß-cyclodextrin (HBCD) and how sperm cryopreservation outcomes are improved by these changes. Treatment with 2 mg HBCD supported the highest (P < 0.01) percentage of viable spermatozoa compared with the control and CLCs groups after cryopreservation. The percentage of post-thaw progressive and rapid sperm motility was highest in 2 mg HBCD (P < 0.01). After thawing, sperm treated with 1 or 2 mg CLC showed the highest anisotropy at 5, 21, 25 and 40°C (P < 0.01). At 25°C, the lowest anisotropy was observed in the thawed semen from the control group. The highest value (P < 0.01) of generalized polarization (GP) (0.5) at 5°C was observed in the 1 mg CLC treated sample. After 2 h of incubation, the highest percentage of viable spermatozoa was observed in the HBCD group in relation to the other treatments (P < 0.01). Exposure to 1 mg or 2 mg of CLC significantly decreased the percentage of live spermatozoa after thawing (P < 0.01). In conclusion, HBCD appears to play a role in the modification of sperm membranes, increasing their fluidity and preventing them against membrane phase transition to gel, thus minimizing freezing-thaw sperm damage. HBCD treatment enhances chicken sperm viability and motility after cryopreservation and subsequent storage. This novel procedure may be useful for improving the technology for cryopreservation of fowl spermatozoa.
Assuntos
Membrana Celular/química , Colesterol/química , Criopreservação/métodos , Preservação do Sêmen/métodos , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular , Galinhas , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Masculino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , beta-Ciclodextrinas/químicaRESUMO
In this study, we found that the sumac tannins (Rhus typhina L.) exert to a various extent antihemolytic effects and antibacterial activity against Bacillus cereus and Pseudomonas aeruginosa depending on structural specificity of bacteria and different mechanisms of their toxic action. The sumac tannins exert the most expressed activity against B. cereus. The antihemolytic effect of the sumac tannins seems to be connected to a greater extent with their modifying action on the erythrocyte membrane structure. It was found that the sumac tannins are incorporated into the erythrocyte membrane, causing transformation of discocytes into echinocytes and enhancing the rigidity of the hydrophilic region of the lipid bilayer. We suggest that the embedding of sumac tannins into the membrane of erythrocytes alters their physical properties and, as a consequence, can limit their interaction with bacterial toxins.
Assuntos
Taninos Hidrolisáveis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Rhus/química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Taninos Hidrolisáveis/química , Extratos Vegetais/química , Pseudomonas/efeitos dos fármacosRESUMO
Neoadjuvant chemotherapy is the foundation treatment for triple-negative breast cancer (TNBC) and frequently results in pathological complete response (pCR). However, there are large differences in clinical response and survival after neoadjuvant chemotherapy of TNBC patients. The aim was to identify genes whose expression significantly associates with the efficacy of neoadjuvant chemotherapy in patients with TNBC. Transcriptomes of 46 formalin-fixed paraffin-embedded (FFPE) tumor samples from TNBC patients were analyzed by RNA-seq by comparing 26 TNBCs with pCR versus 20 TNBCs with pathological partial remission (pPR). Subsequently, we narrowed down the list of genes to those that strongly correlated with drug sensitivity of 63 breast cancer cell lines based on Dependency Map Consortium data re-analysis. Furthermore, the list of genes was limited to those presenting specific expression in breast tumor cells as revealed in three large published single-cell RNA-seq breast cancer datasets. Finally, we analyzed which of the selected genes were significantly associated with overall survival (OS) in TNBC TCGA dataset. A total of 105 genes were significantly differentially expressed in comparison between pPR versus pCR. As revealed by PLSR analysis in breast cancer cell lines, out of 105 deregulated genes, 42 were associated with sensitivity to docetaxel, doxorubicin, paclitaxel, and/or cyclophosphamide. We found that 24 out of 42 sensitivity-associated genes displayed intermediate or strong expression in breast malignant cells using single-cell RNAseq re-analysis. Finally, 10 out of 24 genes were significantly associated with overall survival in TNBC TCGA dataset. Our RNA-seq-based findings suggest that there might be transcriptomic signature consisted of 24 genes specifically expressed in tumor malignant cells for predicting neoadjuvant response in FFPE samples from TNBC patients prior to treatment initiation. Additionally, nine out of 24 genes were potential survival predictors in TNBC. This group of 24 genes should be further investigated for its potential to be translated into a predictive test(s).
RESUMO
The present study had the following aims: 1) to compare gut microbiota composition in patients with schizophrenia and controls and 2) to investigate the association of differentially abundant bacterial taxa with markers of inflammation, intestinal permeability, lipid metabolism, and glucose homeostasis as well as clinical manifestation. A total of 115 patients with schizophrenia during remission of positive and disorganization symptoms, and 119 controls were enrolled. Altogether, 32 peripheral blood markers were assessed. A higher abundance of Eisenbergiella, Family XIII AD3011 group, Eggerthella, Hungatella, Lactobacillus, Olsenella, Coprobacillus, Methanobrevibacter, Ligilactobacillus, Eubacterium fissicatena group, and Clostridium innocuum group in patients with schizophrenia was found. The abundance of Paraprevotella and Bacteroides was decreased in patients with schizophrenia. Differentially abundant genera were associated with altered levels of immune-inflammatory markers, zonulin, lipid profile components, and insulin resistance. Moreover, several correlations of differentially abundant genera with cognitive impairment, higher severity of negative symptoms, and worse social functioning were observed. The association of Methanobrevibacter abundance with the level of negative symptoms, cognition, and social functioning appeared to be mediated by the levels of interleukin-6 and RANTES. In turn, the association of Hungatella with the performance of attention was mediated by the levels of zonulin. The findings indicate that compositional alterations of gut microbiota observed in patients with schizophrenia correspond with clinical manifestation, intestinal permeability, subclinical inflammation, lipid profile alterations, and impaired glucose homeostasis. Subclinical inflammation and impaired gut permeability might mediate the association of gut microbiota alterations with psychopathological symptoms and cognitive impairment.
Assuntos
Microbioma Gastrointestinal , Esquizofrenia , Humanos , Inflamação , Glucose , LipídeosRESUMO
Sperm membrane composition and biophysical characteristics play a pivotal role in many physiological processes (i.e. sperm motility, capacitation, acrosome reaction and fusion with the oocyte) as well as in semen processing (e.g. cryopreservation). The aim of this study was to characterize the fatty acid content and biophysical characteristics (anisotropy, generalized polarization) of the cell membrane of domestic cat spermatozoa. Semen was collected from 34 adult male cats by urethral catheterization. After a basic semen evaluation, the fatty acid content of some of the samples (n = 11) was evaluated by gas chromatography. Samples from other individuals (n = 23) were subjected to biophysical analysis: membrane anisotropy (which is inversely proportional to membrane fluidity) and generalized polarization (describing lipid order); both measured by fluorimetry at three temperature points: 38 °C, 25 °C and 5 °C. Spermatozoa from some samples (n = 10) were cryopreserved in TRIS egg yolk-glycerol extender and underwent the same biophysical analysis after thawing. Most fatty acids in feline spermatozoa were saturated (69.76 ± 24.45%), whereas the polyunsaturated fatty acid (PUFA) content was relatively low (6.12 ± 5.80%). Lowering the temperature caused a significant decrease in membrane fluidity and an increase in generalized polarization in fresh spermatozoa, and these effects were even more pronounced following cryopreservation. Anisotropy at 38 °C in fresh samples showed strong positive correlations with viability and motility parameters after thawing. In summary, feline spermatozoa are characterized by a very low PUFA content and a low ratio of unsaturated:saturated fatty acids, which may contribute to low oxidative stress. Cryopreservation alters the structure of the sperm membrane, increasing the fluidity of the hydrophobic portion of the bilayer and the lipid order in the hydrophilic portion. Because lower membrane fluidity in fresh semen was linked with better viability and motility after cryopreservation, this parameter may be considered an important factor in determination of sperm cryoresistance.
Assuntos
Membrana Celular , Criopreservação , Ácidos Graxos , Fluidez de Membrana , Espermatozoides , Animais , Masculino , Gatos , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Membrana Celular/metabolismo , Criopreservação/métodos , Motilidade dos Espermatozoides/fisiologia , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária , Análise do Sêmen/veterináriaRESUMO
The diseases of blood circulation system--cardiovascular diseases are the main causes of mortality in developing, low and middle-income countries all over the world. The specialists recommend the prophylaxis to avoid the dangerous complications connected with these diseases, what can reduce the final treatment costs. All over the world there is continuous research of novel, therapeutically better, more effective anticoagulant or anti-platelet agents, with multiple targets, without so many side effects. Plant material is a good source to do this kind of research. The authors show the results of their few years research on polyphenolic-polysaccharide plant conjugates, isolated from medicinal plants, popular in Poland, which is continuing in the framework of the project WROVASC--Integrated Center of Cardiovascular Medicine. This research group has been working on isolation, structure characterization and biological activity of these macromolecular compounds. Because of anticoagulant, antioxidant as well as anti-platelet properties of these plant structures they are promising to be a new source of the innovative therapeutic agent.
Assuntos
Anticoagulantes/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Trombose/tratamento farmacológico , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Humanos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plantas Medicinais/químicaRESUMO
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Esclerose Múltipla/terapia , Probióticos/uso terapêutico , Transplante de Microbiota Fecal , Dieta , Disbiose , PrebióticosRESUMO
The number of people suffering from metabolic syndrome (MetS) including type 2 diabetes (T2DM), hypertension, and obesity increased over 10 times through the last 30 years and it is a severe public health concern worldwide. Uncoupling protein 1 (UCP1) is a mitochondrial carrier protein found only in brown adipose tissue involved in thermogenesis and energy expenditure. Several studies showed an association between UCP1 variants and the susceptibility to MetS, T2DM, and/or obesity in various populations; all these studies were, however, limited to a few selected polymorphisms. The present study aimed to search within the entire UCP1 gene for new variants potentially associated with MetS and/or T2DM risk. We performed NGS sequencing of the entire UCP1 gene in 59 MetS patients including 29 T2DM patients, and 36 controls using the MiSeq platform. An analysis of allele and genotype distribution revealed nine variations which seem to be interesting in the context of MetS and fifteen in the context of T2DM. Altogether, we identified 12 new variants, among which only rs3811787 was investigated previously by others. Thereby, NGS sequencing revealed new intriguing UCP1 gene variants potentially associated with MetS and/or T2DM risk in the Polish population.