Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067573

RESUMO

Capsaicin is known as an oily extract of paprika that is characterized by pungent taste and bioactivity. It also may cause irritation to the mouth and stomach which is why is so important to immobilize capsaicin on a carrier to prevent it. The usage of alginate oligomers, which has an antioxidant potential compared to alginate, is of benefit because it may be used in the immobilization of bioactive substances that are fragile to oxidation. The purpose of this study was to use sodium alginate oligomers as a coating material in the encapsulation process of paprika oleoresin. Alginate oligomers were produced by chemical degradation with hydrogen peroxide. The characteristics of the samples were obtained by measuring the viscosity, the contact angle of the surface, and the surface tension of solutions. The obtained solution of alginate oligomers served as the carrier material for the immobilization of capsaicin. Capsules were prepared by ionic gelation using a calcium chloride solution as a crosslinking agent. In this way, capsules without and with the core (capsaicin) were prepared and their ability to scavenge free radicals (DPPH) and iron-reducing properties (FRAP) were determined. The stability of the capsules was examined by thermal decomposition and under conditions of the gastric and small intestine, and capsaicin content was detected using high-performance liquid chromatography. It was found that alginate oligomers could be used in the encapsulation of bioactive compounds and the efficiency was above 80%. Capsule production from alginate oligomers affected their thermal stability. The use of alginate derivatives as a carrier increased the antioxidant properties of the finished product, as well as its ability to reduce iron ions. The use of alginate oligomers as a coating material prevented the active substance from being released too early in the conditions of the small intestine, prolonged the stability of the capsules, and supported their durability in gastric conditions.


Assuntos
Alginatos , Capsicum , Alginatos/química , Capsaicina , Antioxidantes/farmacologia , Antioxidantes/química , Cloreto de Cálcio/química , Ferro , Cápsulas
2.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946988

RESUMO

The aim of the study was to investigate the changes within the physicochemical properties of gelatin, carrageenan, and sodium alginate hydrosols prepared on the basis of micro-clustered (MC) water. The rheological parameters, contact angle and antioxidant activity of hydrosols were investigated. Moreover, the pH, oxidation-reduction potential (ORP) and electrical conductivity (EC) were measured. The hydrosols with MC water were characterized by a lower pH, decreased viscosity, a lower contact angle, and only slightly lower antioxidant activity than control samples. The results showed that hydrosol's properties are significantly changed by MC water, which can lead to enhancement of its applicability but requires further investigation.


Assuntos
Alginatos/química , Carragenina/química , Aditivos Alimentares/química , Gelatina/química , Polímeros/química , Solventes/química , Água/química , Antioxidantes , Condutividade Elétrica , Conservação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Oxirredução , Gases em Plasma , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Reologia , Solubilidade , Viscosidade
3.
Pharm Res ; 34(10): 2075-2083, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28639052

RESUMO

PURPOSE: To develop polysaccharide-based membranes that allow controlled and localized delivery of gentamicin for the treatment of post-operative bone infections. METHODS: Membranes made of gellan gum (GUM), sodium alginate (ALG), GUM and ALG crosslinked with calcium ions (GUM + Ca and ALG + Ca, respectively) as well as reference collagen (COL) were produced by freeze-drying. Mechanical properties, drug release, antimicrobial activity and cytocompatibility of the membranes were assessed. RESULTS: The most appropriate handling and mechanical properties (Young's modulus, E = 92 ± 4 MPa and breaking force, F MAX  = 2.6 ± 0.1 N) had GUM + Ca membrane. In contrast, COL membrane showed F MAX  = 0.14 ± 0.02 N, E = 1.0 ± 0.3 MPa and was deemed to be unsuitable for antibiotic delivery. The pharmacokinetic data demonstrated a uniform and sustainable delivery of gentamicin from GUM + Ca (44.4 ± 1.3% within 3 weeks), while for COL, ALG and ALG + Ca membranes the most of the drug was released within 24 h (55.3 ± 1.9%, 52.5 ± 1.5% and 37.5 ± 1.8%, respectively). Antimicrobial activity against S. aureus and S. epidermidis was confirmed for all the membranes. GUM + Ca and COL membranes supported osteoblasts growth, whereas on ALG and ALG + Ca membranes cell growth was reduced. CONCLUSIONS: GUM + Ca membrane holds promise for effective treatment of bone infections thanks to favorable pharmacokinetics, bactericidal activity, cytocompatibility and good mechanical properties.


Assuntos
Antibacterianos/farmacologia , Gentamicinas/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/prevenção & controle , Polissacarídeos/química , Alginatos/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Cálcio/química , Colágeno/química , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Gentamicinas/administração & dosagem , Gentamicinas/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Teste de Materiais/métodos , Membranas Artificiais , Polissacarídeos Bacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/prevenção & controle
4.
Int J Mol Sci ; 18(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327520

RESUMO

The aim of the study was to investigate the effect of using direct electric current (DC) of 0, 200, and 400 mA for five minutes on the physiochemical properties, cytotoxicity, antibacterial, and antioxidant activity of sodium alginate hydrosols with different sodium chloride concentrations. The pH, oxidation-reduction potential (ORP), electrical conductivity (EC), and available chlorine concentration (ACC) were measured. The effect of sodium alginate hydrosols treated with DC on Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Micrococcus luteus, Escherichia coli, Salmonella enteritidis, Yersinia enterocolitica, Pseudomonas fluorescence, and RAW 264.7 and L929 cells was investigated. Subsequently, the antioxidant properties of hydrosols were evaluated by determining the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH) and ferric reducing antioxidant power (FRAP). The results have shown that after applying 400 mA in hydrosol samples with 0.1% and 0.2% NaCl all tested bacteria were inactivated. The ACC concentration of C400 samples with NaCl was equal to 13.95 and 19.71 mg/L, respectively. The cytotoxicity analysis revealed that optimized electric field conditions and the addition of sodium chloride allow for the avoidance of toxicity effects on normal cells without disturbing the antibacterial effects. Due to the presence of oxidizing substances, the DPPH of variants treated with DC was lower than the DPPH of control samples.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Eletricidade , Alginatos/química , Animais , Antibacterianos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Condutividade Elétrica , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Oxirredução/efeitos dos fármacos , Soluções/química
5.
Molecules ; 22(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28067840

RESUMO

Meat is one of the most challenging food products in the context of maintaining quality and safety. The aim of this work was to improve the quality of raw/cooked meat by coating it with sodium alginate (A), chitosan (C), and sodium alginate-chitosan polyelectrolyte complex (PEC) hydrosols. Antioxidant properties of A, C, and PEC hydrosols were determined. Subsequently, total antioxidant capacity (TAC), sensory quality of raw/cooked pork coated with experimental hydrosols, and antimicrobial efficiency of those hydrosols on the surface microbiota were analysed. Application analyses of hydrosol were performed during 0, 7, and 14 days of refrigerated storage in MAP (modified atmosphere packaging). Ferric reducing antioxidant power (FRAP) and (2,2-diphenyll-picrylhydrazyl (DPPH) analysis confirmed the antioxidant properties of A, C, and PEC. Sample C (1.0%) was characterized by the highest DPPH value (174.67 µM Trolox/mL) of all variants. PEC samples consisted of A 0.3%/C 1.0% and A 0.6%/C 1.0% were characterized by the greatest FRAP value (~7.21 µM Fe2+/mL) of all variants. TAC losses caused by thermal treatment of meat were reduced by 45% by coating meat with experimental hydrosols. Application of PEC on the meat surface resulted in reducing the total number of micro-organisms, psychrotrophs, and lactic acid bacteria by about 61%, and yeast and molds by about 45% compared to control after a two-week storage.


Assuntos
Alginatos/farmacologia , Antioxidantes/farmacologia , Quitosana/farmacologia , Embalagem de Alimentos/métodos , Carne/análise , Polieletrólitos/farmacologia , Alginatos/química , Animais , Antioxidantes/química , Compostos de Bifenilo/antagonistas & inibidores , Quitosana/química , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Qualidade dos Alimentos , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/crescimento & desenvolvimento , Carne/microbiologia , Membranas Artificiais , Consórcios Microbianos/efeitos dos fármacos , Picratos/antagonistas & inibidores , Polieletrólitos/química , Suínos
6.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765659

RESUMO

The aims of this study were to obtain chitooligosaccharides (COS) from chitosan (CH) with improved functional properties and comparison of the use of two different enzymes: commercial cellulase (CL) and the dedicated enzyme chitosanase (CS). After enzymatic reaction, chitosan oligomers (NFs) were isolated by methanol into two fractions: precipitate (HMF) and supernatant (LMF). The occurrence of a hydrolysis reaction was confirmed by an increased reducing sugar content and viscosity reduction of chitosan oligomers. CPMAS 13C NMR analysis confirmed the dissimilar cleavage mechanism of the enzymes used. LMF and NF fractions were characterised by improved solubility in water (94.56%) compared to the HMF and CH samples (70.64%). Thermogravimetric analysis (TGA) showed that the HMF decomposed in two-stage process while CH, NF, and LMF decomposed in a three-stage process. The greatest mass loss of LMF samples (58.35%) suggests their sensitivity to high-temperature treatments. COS were a mixture of DP (degrees of polymerisation) from 3 to 18 hetero-chitooligomers, with an average Mw of <3 kDa. CL consisted of more low-DP products (DP 3-7) than COS made with CS. LMF characterised by DP~2 showed lower DPPH radical scavenging activity than HMF and NF with DP 3-7. The ability to reduce Escherichia coli increased in the given order: LMF > NF > HMF > CH.

7.
Polymers (Basel) ; 13(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34301016

RESUMO

The aim of the study was to obtain alginate oligosaccharides by using two degradation methods of sodium alginate (SA): with hydrochloric acid (G-guluronate, M-mannuronate and G + M fractions) and hydrogen peroxide (HAS-hydrolyzed SA), in order to assess and compare their biological activity and physico-chemical properties, with an attempt to produce gels from the obtained hydrolysates. The efficiency of each method was determined in order to select the fastest and most efficient process. The ferric ion reducing antioxidant power (FRAP), the ability to scavenge DPPH free radicals, rheological properties, Fourier Transformed Spectroscopy (FTIR) and the microbiological test against Escherichia coli and Staphylococcus aureus were performed. In order to check the functional properties of the obtained oligosaccharides, the texture profile analysis was assessed. The hydrolysis yield of acid SA depolymerization was 28.1% and from hydrogen peroxide SA, depolymerization was 87%. The FTIR analysis confirmed the degradation process by both tested methods in the fingerprint region. The highest ferric reducing antioxidant power was noted for HSA (34.7 µg), and the highest hydroxyl radical scavenging activity was obtained by G fraction (346 µg/Trolox ml). The complete growth inhibition (OD = 0) of alginate hydrolysates was 1%. All tested samples presented pseudoplastic behavior, only HSA presented the ability to form gel.

8.
Meat Sci ; 123: 219-228, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27788419

RESUMO

The aim of this work was to develop polyelectrolyte material suitable for active beef steaks coatings, by complexation of chitosan (CH) and sodium alginate (ALG) in a broad range of alginate/chitosan ratios (R). The rheological analysis confirmed significant effect of polymers ratios on the physical properties of sodium alginate-chitosan (ACH) hydrosols. The shear thinning non-Newtonian nature, thixotropic behavior and gel-like structure of solutions were displayed. Obtained complexes possess DPPH radical scavenging activity corresponding to 5.33, 17.06 and 41.41µMTrolox/ml for 0ppm, 500ppm and 1000pmm of sodium erythorbate dose, respectively. Application of ACH hydrosols enriched with 1000ppm of sodium erythorbate enhanced redness and color stability of beef steaks during storage (∆E after 2-weeks of storage=1.44±0.08) compared to uncovered beef (∆E after 2-weeks of storage=3.53±0.13). The limited solubility in range of 0%-54.56% as well as favorable wetting properties (contact angle between 45°-66°) of polyelectrolyte ACH films were obtained.


Assuntos
Alginatos/química , Quitosana/química , Aditivos Alimentares/análise , Polieletrólitos/química , Carne Vermelha/análise , Animais , Bovinos , Cor , Comportamento do Consumidor , Manipulação de Alimentos , Embalagem de Alimentos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Polímeros , Solubilidade , Soluções , Vácuo
9.
Polymers (Basel) ; 9(11)2017 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30965905

RESUMO

We investigated the effect of sodium alginate hydrosols (1%) with 0.2% of NaCl treated with direct electric current (DC) used as a coating on microbial (Total Viable Counts, Psychrotrophic bacteria, yeast and molds, Lactic acid bacteria, Enterobacteriaceae), physiochemical (pH, lipid oxidation, antioxidant activity, weight loss, color) and sensory properties of skinned pork sausages or with artificial casing stored at 4 °C for 28 days. Moreover, the cytotoxicity analysis of sodium alginate hydrogels was performed. The results have shown that application of experimental coatings on the sausage surface resulted in reducing all tested groups of microorganisms compared to control after a 4-week storage. The cytotoxicity analysis revealed that proliferation of RAW 264.7 and L929 is not inhibited by the samples treated with 200 mA. Ferric reducing antioxidant power (FRAP) and free radical scavenging activity (DPPH) analyses showed that there are no significant differences in antioxidant properties between control samples and those covered with sodium alginate. After 28 days of storage, the highest value of thiobarbituric acid-reactive substances (TBARS) was noticed for variants treated with 400 mA (1.07 mg malondialdehyde/kg), while it was only slightly lower for the control sample (0.95 mg MDA/kg). The obtained results suggest that sodium alginate treated with DC may be used as a coating for food preservation because of its antimicrobial activity and lack of undesirable impact on the quality factors of sausages.

10.
Polymers (Basel) ; 8(5)2016 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-30979272

RESUMO

Biomaterials based on polyelectrolyte complexation are an innovative concept of coatings and packaging production to be applied in a wide range of food products. The aim of this study was to obtain and characterize a sodium alginate⁻chitosan complex material with variable degree of polyion interactions by complexation of oppositely charged polysaccharides. In order to characterize polyelectrolyte complexes, theromogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), matrix-assisted laser desorption/ionization technique with time of flight analyzer (MALDI-TOF), and scanning electron microscopy (SEM) were performed. TGA analysis showed that thermal decomposition temperature depends on the polymer ratio (R) and thermal resistance of samples was improved by increasing chitosan dosage. Accordingly to DMTA results, polyelectrolyte complexation led to obtain more flexible and resistant to mechanical deformation materials. Comparative analysis of the FTIR spectra of single polyelectrolytes, chitosan and alginate, and their mixtures indicated the formation of the polyelectrolyte complex without addition of reinforcing substances. MALDI-TOF analysis confirms the creation of polyelectrolyte aggregates (~197 Da) in samples with R ≥ 0.8; and their chemical stability and safety were proven by NMR analysis. The higher R the greater the number of polyanion⁻polycation aggregates seen in SEM as film morphology roughness.

11.
Polymers (Basel) ; 8(1)2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30979105

RESUMO

The aim of the study was to produce 3D sponges based on enzymatically modified lysozyme selected polysaccharides and assess their physicochemical properties. The alginate/chitosan sponges were formed from polymers hydrosols in different proportions at a final concentration of 1% polysaccharides. Hydrosols were modified by lysozyme addition of 1000 U. Hydrosols without or with enzyme were analyzed for their reducing sugar content, rheological properties and ability to scavenge free radicals. Sponges formed from hydrosols were tested for solubility and compressive properties. Only chitosan was hydrolyzed by lysozyme. The morphology of sponges was investigated by scanning electron microscopy (SEM). It was proven that the antioxidant properties of hydrosols are dependent on the concentration of chitosan. It was also shown that the addition of lysozyme negatively affected the free radical scavenging ability of single hydrosols of alginate and chitosan, and their mixtures. The Ostwald de Waele as well as Herschel⁻Bulkley models of rheological properties fitted the experimental data well (R² is between 0.947 and 1.000). Increase in textural features values of sponges was observed. Sponges with pure alginate and pure chitosan were almost completely soluble. The enzyme addition significantly changed the characteristics of the cross-section structure of sponges, and made the surface smoother.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA