Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834593

RESUMO

The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.


Assuntos
Ciprinodontiformes , Fundulidae , Animais , Masculino , Feminino , Serotonina , Triptofano , Envelhecimento , Encéfalo , Triptofano Hidroxilase , Monoaminoxidase
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674499

RESUMO

The Bdnf (brain-derived neurotrophic factor) gene contains eight regulatory exons (I-VIII) alternatively spliced to the protein-coding exon IX. Only exons I, II, IV, and VI are relatively well studied. The BDNF system and brain serotonergic system are tightly interconnected and associated with aggression. The benzopentathiepine TC-2153 affects both systems and exerts antiaggressive action. Our aim was to evaluate the effects of TC-2153 on the Bdnf exons I-IX's expressions and serotonin receptors' mRNA levels in the brain of rats featuring high aggression toward humans (aggressive) or its absence (tame). Aggressive and tame adult male rats were treated once with vehicle or 10 or 20 mg/kg of TC-2153. mRNA was quantified in the cortex, hippocampus, hypothalamus, and midbrain with real-time PCR. Selective breeding for high aggression or its absence affected the serotonin receptors' and Bdnf exons' transcripts differentially, depending on the genotype (strain) and brain region. TC-2153 had comprehensive effects on the Bdnf exons' expressions. The main trend was downregulation in the hypothalamus and midbrain. TC-2153 increased 5-HT1B receptor hypothalamusc mRNA expression. For the first time, an influence of TC-2153 on the expressions of Bdnf regulatory exons and the 5-HT1B receptor was shown, as was an association between Bdnf regulatory exons and fear-induced aggression involving genetic predisposition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Receptor 5-HT1B de Serotonina , Humanos , Ratos , Animais , Masculino , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT1B de Serotonina/metabolismo , Encéfalo/metabolismo , Medo/fisiologia , RNA Mensageiro/análise , Hipocampo/metabolismo , Agressão/fisiologia
3.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431798

RESUMO

Nitrogen-doped carbon nanomaterial (NDCNM) was synthesized by grinding a mixture of graphene oxide and melamine in a planetary mill with both balls and milling chamber of zirconium dioxide. In the electron spin resonance spectrum of NDCNM, a broad signal with g = 2.08 was observed in addition to a narrow signal at g = 2.0034. In the study using a vibrating-sample magnetometer, the synthesized material is presumably a ferromagnet with a coercive force of 100 Oe. The specific magnetization at 10,000 Oe is approximately 0.020 and 0.055 emu/g at room temperature and liquid nitrogen temperature, respectively.

4.
Molecules ; 27(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500381

RESUMO

Parkinson's disease (PD) is the most common age-related movement disorder characterized by the progressive loss of nigrostriatal dopaminergic neurons. To date, PD treatment strategies are mostly based on dopamine replacement medicines, which can alleviate motor symptoms but do not slow down the progression of neurodegeneration. Thus, there is a need for disease-modifying PD therapies. The aim of this work was to evaluate the neuroprotective effects of the novel compound PA96 on dopamine neurons in vivo and in vitro, assess its ability to alleviate motor deficits in MPTP- and haloperidol-based PD models, as well as PK profile and BBB penetration. PA96 was synthesized from (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl) cyclohex-3-ene-1,2-diol (Prottremin) using the original three-step stereoselective procedure. We found that PA96: (1) supported the survival of cultured näive dopamine neurons; (2) supported the survival of MPP+-challenged dopamine neurons in vitro and in vivo; (3) had chemically appropriate properties (synthesis, solubility, etc.); (4) alleviated motor deficits in MPTP- and haloperidol-based models of PD; (5) penetrated the blood-brain barrier in vivo; and (6) was eliminated from the bloodstream relative rapidly. In conclusion, the present article demonstrates the identification of PA96 as a lead compound for the future development of this compound into a clinically used drug.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Humanos , Neurônios Dopaminérgicos , Intoxicação por MPTP/tratamento farmacológico , Monoterpenos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Haloperidol/farmacologia , Substância Negra
5.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884655

RESUMO

The mechanisms of resistance to antidepressant drugs is a key and still unresolved problem of psychopharmacology. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) play a key role in the therapeutic effect of many antidepressants. Tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in 5-HT synthesis in the brain. We used zebrafish (Danio rerio) as a promising model organism in order to elucidate the effect of TPH2 deficiency caused by p-chlorophenylalanine (pCPA) on the alterations in behavior and expression of 5-HT-related (Tph2, Slc6a4b, Mao, Htr1aa, Htr2aa) and BDNF-related (Creb, Bdnf, Ntrk2a, Ngfra) genes in the brain after prolonged treatment with two antidepressants, inhibitors of 5-HT reuptake (fluoxetine) and oxidation (pargyline). In one experiment, zebrafish were treated for 72 h with 0.2 mg/L fluoxetine, 2 mg/L pCPA, or the drugs combination. In another experiment, zebrafish were treated for 72 h with 0.5 mg/L pargyline, 2 mg/L pCPA, or the drugs combination. Behavior was studied in the novel tank diving test, mRNA levels were assayed by qPCR, 5-HT and its metabolite concentrations were measured by HPLC. The effects of interaction between pCPA and the drugs on zebrafish behavior were observed: pCPA attenuated "surface dwelling" induced by the drugs. Fluoxetine decreased mRNA levels of Tph2 and Htr2aa genes, while pargyline decreased mRNA levels of Slc6a4b and Htr1aa genes. Pargyline reduced Creb, Bdnf and Ntrk2a genes mRNA concentration only in the zebrafish treated with pCPA. The results show that the disruption of the TPH2 function can cause a refractory to antidepressant treatment.


Assuntos
Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fluoxetina/farmacologia , Pargilina/farmacologia , Serotonina/metabolismo , Triptofano Hidroxilase/deficiência , Proteínas de Peixe-Zebra/deficiência , Animais , Antidepressivos/farmacologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Inibidores da Monoaminoxidase/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Triptofano Hidroxilase/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
6.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707818

RESUMO

Tyrosine phosphatase STEP (striatal-enriched tyrosine protein phosphatase) is a brain-specific protein phosphatase and is involved in the pathogenesis of many neurodegenerative diseases. Here, we examined the impact of STEP on the development of age-related macular degeneration (AMD)-like pathology in senescence-accelerated OXYS rats. Using OXYS and Wistar rats (control), we for the first time demonstrated age-dependent changes in Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the retina. The increases in STEP protein levels and the decrease of total and STEP phosphatase activities in the retina (as compared with Wistar rats) preceded the manifestation of clinical signs of AMD in OXYS rats (age 20 days). There were no differences in these retinal parameters between 13-month-old Wistar rats and OXYS rats with pronounced signs of AMD. Inhibition of STEP with TC-2153 during progressive AMD-like retinopathy (from 9 to 13 months of age) reduced the thickness of the retinal inner nuclear layer, as evidenced by a decreased amount of parvalbumin-positive amacrine neurons. Prolonged treatment with TC-2153 had no effect on Ptpn5 mRNA expression, STEP46 and STEP61 protein levels, and their phosphatase activity in the OXYS retina. Thus, TC-2153 may negatively affect the retina through mechanisms unrelated to STEP.


Assuntos
Envelhecimento/metabolismo , Regulação da Expressão Gênica/genética , Degeneração Macular/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Retina/metabolismo , Doenças Retinianas/metabolismo , Envelhecimento/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzotiepinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Degeneração Macular/patologia , Masculino , Fator de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Ratos , Ratos Wistar , Doenças Retinianas/enzimologia , Doenças Retinianas/genética
7.
Neuropsychobiology ; 75(4): 200-210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29621775

RESUMO

BACKGROUND: Human aggression is a heterogeneous behavior with biological, psychological, and social backgrounds. As the biological mechanisms that regulate aggression are components of both reward-seeking and adversity-fleeing behavior, these phenomena are difficult to disentangle into separate neurochemical processes. Nevertheless, evidence exists linking some forms of aggression to aberrant serotonergic neurotransmission. We determined possible associations between 6 serotonergic neurotransmission-related gene variants and severe criminal offenses. METHODS: Male Russian prisoners who were convicted for murder (n = 117) or theft (n = 77) were genotyped for variants of the serotonin transporter (5HTTLPR), tryptophan hydroxylase, tryptophan-2,3-dioxygenase, or type 2C (5-HT2C) receptor genes and compared with general-population male controls (n = 161). Prisoners were psychologically phenotyped using the Buss-Durkee Hostility Inventory and the Beck Depression Inventory. RESULTS: No differences were found between murderers and thieves either concerning genotypes or concerning psychological measures. Comparison of polymorphism distribution between groups of prisoners and controls revealed highly significant associations of 5HTTLPR and 5-HTR2C (rs6318) gene polymorphisms with being convicted for criminal behavior. CONCLUSIONS: The lack of biological differences between the 2 groups of prisoners indicates that the studied 5HT-related genes do not differentiate between the types of crimes committed.


Assuntos
Comportamento Criminoso , Receptor 5-HT2C de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Adulto , Estudos de Casos e Controles , Criminosos , Depressão/genética , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Violência
8.
Org Biomol Chem ; 15(4): 773-777, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-27830866

RESUMO

We report novel synthetic routes for facile preparation of highly functionalized fullerene derivatives C60(OR)5X (X = H, Cl, Br), C60(OR)4O and C60(OR)2 from chlorofullerene C60Cl6. The first water-soluble fullerene compound bearing residues of 3-oxypropanoic acid demonstrated a potent anti-HIV activity.

9.
Pharmacol Res ; 103: 123-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26621247

RESUMO

G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.


Assuntos
Temperatura Corporal/fisiologia , Receptor 5-HT2A de Serotonina/metabolismo , Anfetaminas/farmacologia , Animais , Encéfalo/metabolismo , Citocinas/genética , Inflamação/metabolismo , Ketanserina/farmacologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo , Receptor 5-HT2A de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
10.
Behav Brain Res ; 466: 115000, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38631659

RESUMO

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Assuntos
Envelhecimento , Encéfalo , Ácido Hidroxi-Indolacético , Monoaminoxidase , Proteínas da Membrana Plasmática de Transporte de Serotonina , Serotonina , Caracteres Sexuais , Triptofano Hidroxilase , Peixe-Zebra , Animais , Serotonina/metabolismo , Masculino , Feminino , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Encéfalo/metabolismo , Monoaminoxidase/metabolismo , Triptofano Hidroxilase/metabolismo , Triptofano Hidroxilase/genética , Ácido Hidroxi-Indolacético/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Atividade Motora/fisiologia , Comportamento Animal/fisiologia , Receptores de Serotonina/metabolismo , Receptores de Serotonina/genética
11.
Biomolecules ; 13(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371543

RESUMO

Tryptophan hydroxylase 2 (TPH2) is the key and rate-limited enzyme of serotonin (5-HT) synthesis in the brain. The C1473G mutation in the Tph2 gene results in a two-fold decrease in enzyme activity in the mouse brain. The lethal yellow (AY) mutation in the Raly-Agouti locus results in the overexpression of the Agouti gene in the brain and causes obesity and depressive-like behavior in mice. Herein, the possible influences of these mutations and their combination on body mass, behavior, brain 5-HT and melanocortin systems in mice of the B6-1473CC/aa. B6-1473CC/AYa, B6-1473GG/aa are investigated. B6-1473GG/AYa genotypes were studied. The 1473G and AY alleles increase the activity of TPH2 and the expression of the Agouti gene, respectively, but they do not alter 5-HT and 5-HIAA levels or the expression of the genes Tph2, Maoa, Slc6a4, Htr1a, Htr2a, Mc3r and Mc4r in the brain. The 1473G allele attenuates weight gain and depressive-like immobility in the forced swim test, while the AY allele increases body weight gain and depressive-like immobility. The combination of these alleles results in hind limb dystonia in the B6-1473GG/AYa mice. This is the first evidence for the interaction between the C1473G and AY mutations.


Assuntos
Encéfalo , Depressão , Melanocortinas , Obesidade , Serotonina , Triptofano Hidroxilase , Animais , Camundongos , Encéfalo/metabolismo , Depressão/etiologia , Depressão/genética , Depressão/metabolismo , Mutação , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Serotonina/genética , Serotonina/metabolismo , Natação , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Melanocortinas/genética , Melanocortinas/metabolismo
12.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892138

RESUMO

Tryptophan hydroxylase 2 (TPH2) is the key and rate-limiting enzyme of serotonin (5-HT) synthesis in the mammalian brain. The 1473G mutation in the Tph2 gene decreases TPH2 activity in the mouse brain by twofold. (R)-2-amino-6-(1R, 2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is a pharmacological chaperone for aromatic amino acid hydroxylases. In the present study, chaperone effects of BH4 on the mutant C1473G TPH2 were investigated in vitro and in vivo. In vitro BH4 increased the thermal stability (T50 value) of mutant and wild-type TPH2 molecules. At the same time, neither chronic (twice per day for 7 days) intraperitoneal injection of 48.3 mg/kg of BH4 nor a single intraventricular administration of 60 µg of the drug altered the mutant TPH2 activity in the brain of Balb/c mice. This result indicates that although BH4 shows a chaperone effect in vitro, it is unable to increase the activity of mutant TPH2 in vivo.


Assuntos
Encéfalo , Triptofano Hidroxilase , Camundongos , Animais , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Pterinas/metabolismo , Camundongos Endogâmicos BALB C , Mamíferos/metabolismo
13.
Curr Protein Pept Sci ; 24(4): 329-338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941814

RESUMO

BACKGROUND: The brain melanocortin system regulates numerous physiological functions and kinds of behavior. The agouti protein inhibits melanocortin receptors in melanocytes. The lethal yellow (AY) mutation puts the Agouti gene under the control of the Raly gene promotor and causes the agouti protein expression in the brain. In the present article, we investigated the effects of the AY mutation on brain mRNA levels of Agouti, Raly, and melanocortin-related genes such as Agrp, Pomc, Mc3r, Mc4r, and their relationship to behavior. METHODS: The experiment was performed on 6-month-old males and females of AY/a and a/a (control) mice. Anxiety and obsessive-compulsive behavior were studied in elevated plus-maze and marble- burying tests. The mRNA levels were quantified by qPCR. RESULTS: AY mutation caused anxiety in males and obsessive-compulsive behavior in females. Positive correlation between Agouti and Raly genes mRNA levels were shown in the hypothalamus, hippocampus, and frontal cortex in AY/a mice. Reduced RNA concentrations of Mc3r and Mc4r genes were found respectively in the hypothalamus and frontal cortex in AY/a males. The Raly gene expression positively correlates with mRNA concentrations of the Mc3r gene in the hypothalamus and the Mc4r gene in the hypothalamus and frontal cortex. CONCLUSION: Possible association of obsessive-compulsive behavior with reduced Raly, Mc3r, or Mc4r gene expression is suggested.


Assuntos
Transtorno Obsessivo-Compulsivo , Animais , Feminino , Masculino , Camundongos , Proteína Agouti Sinalizadora/genética , Proteína Agouti Sinalizadora/metabolismo , Ansiedade/genética , Encéfalo/metabolismo , Melanocortinas/metabolismo , Mutação , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Receptores de Melanocortina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Dalton Trans ; 52(9): 2641-2662, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744818

RESUMO

In this work, a new binuclear nitrosyl complex with 3.4-dichlorothiophenolyl ligands [Fe2(SC6H3Cl2)2(NO)4] has been synthesized. Nitrosyl iron complexes (NICs) are systems for the storage and delivery of NO in the body. There is a dynamic equilibrium between dinitrosyl iron units bound to low molecular weight ligands and high molecular weight (protein) ligands in vivo. From this point of view, the transformation of the studied complex in DMSO and buffer, as well as in biological systems, has been analyzed. In DMSO, it decomposes into mononuclear NICs, which quickly decay in buffer solutions with NO release. The high molecular weight product is formed as a result of the binding of the complex to bovine serum albumin (the Stern-Volmer constant is 2.1 × 105 M-1). In this case, the complex becomes a prolonged NO-donor. Such a long-term effect has been observed for the first time. Similarly, in a system with oxyhemoglobin, NO generation is slower; the UV-vis spectra show a gradual formation of methemoglobin. On the other hand, reduced glutathione has little effect on the NO-donor properties of the complex despite the fact that ligand substitution is observed in the system and a binuclear product is formed. Mucin binds the complex, and the decomposition mechanism is different from that for buffer solutions. Thus, these proteins and glutathione are able to participate in the transformation of the complex and modulate its properties as a potential drug.


Assuntos
Dimetil Sulfóxido , Ferro , Ferro/química , Ligantes , Óxidos de Nitrogênio/química , Óxido Nítrico/química , Doadores de Óxido Nítrico , Glutationa/química
15.
Chin J Physiol ; 55(4): 284-93, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23282170

RESUMO

Although numerous data evidence the implication of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, the potential for BDNF to correct genetically defined depressive-like states is poorly studied. This study was aimed to reveal antidepressant-like effects of BDNF (300 ng, 2×, i.c.v.) on behavior and mRNA expression of genes associated with depression-like state in the brain in mice of antidepressant sensitive catalepsy (ASC) strain characterized by high hereditary predisposition to catalepsy and depressive-like features. Behavioral tests were held on the 7th-16th days after the first (4th-13th after the second) BDNF injection. Results showed that BDNF normalized impaired sexual motivation in the ASC males, and this BDNF effect differed, with advantageous effects, from that of widely used antidepressants. The anticataleptic effect of two BDNF injections was enhanced compared with a single administration. A tendency to decrease the immobility duration in tail-suspension test was observed in BDNF-treated ASC mice. The effects on catalepsy and sexual motivation were specific since BDNF did not alter locomotor and exploratory activity or social interest in the ASC mice. Along with behavioral antidepressant-like effects on the ASC mice, BDNF increased hippocampal mRNA levels of Bdnf and Creb1 (cAMP response element-binding protein gene). BDNF also augmented mRNA levels of Arc gene encoding Arc (Activity-regulated cytoskeleton-associated) protein involved in BDNF-induced processes of neuronal and synaptic plasticity in hippocampus and prefrontal cortex. The data suggest that: [1] BDNF is effective in the treatment of some genetically defined behavioral disturbances; [2] BDNF influences sexually-motivated behavior; [3] Arc mRNA levels may serve as a molecular marker of BDNF physiological activity associated with its long-lasting behavioral effects; [4] ASC mouse strain can be used as a suitable model to study mechanisms of BDNF effects on hereditary-dependent behavioral disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catalepsia , Animais , Antidepressivos/farmacologia , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transtorno Depressivo , Hipocampo/metabolismo , Camundongos
16.
Dalton Trans ; 51(16): 6473-6485, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394482

RESUMO

High-molecular-weight dinitrosyl iron complexes (DNICs) are formed in living systems and are a stable depot of nitrogen monoxide (NO). In this work, using experimental and theoretical methods, we investigated the interaction of their synthetic analog, a promising cardiotropic complex of the composition [Fe(SC(NH2)2)2(NO)2]2[Fe2(S2O3)2(NO)4], with bovine serum albumin (BSA) in aqueous aerobic solutions. We suggested that, under these conditions, the decomposition product of the initial complex with oxygen, the [Fe(NO)(NO2)]+ fragment, can bind in the hydrophobic pocket of the protein. As a result of this interaction, high-molecular-weight Fe(Cys34)(His39)(NO)(NO2) is formed. The binding constant of the complex with protein measured by the quenching of intrinsic fluorescence of BSA is 7.2 × 105 M-1. According to EPR and UV-spectroscopy data, the interaction of the complex with the protein leads to its significant stabilization. In addition to coordination binding, the studied complex can be adsorbed onto the protein surface due to weak intermolecular interactions, resulting in the prolonged generation of NO.


Assuntos
Óxido Nítrico , Tiossulfatos , Ferro/química , Ligantes , Dióxido de Nitrogênio , Óxidos de Nitrogênio/química , Estudos Prospectivos , Soroalbumina Bovina/química , Tioureia
17.
J Inorg Biochem ; 235: 111926, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35843200

RESUMO

Dinitrosyl iron complexes (DNICs) are a depot and potential source of free NO in organisms. Their synthetic analog, N-ethylthiourea DNIC [Fe(SC(NH2)(NHC2H5))2(NO)2]+Cl-∙[Fe(SC(NH2)(NHC2H5))Cl(NO)2]0 (complex 1), as cardioprotective and cytostatic agent is a promising prodrug for the treatment of socially relevant diseases. In this work, transformation mechanism of complex 1 has been studied in anaerobic aqueous solution (pH = 7.0), DMSO, and ethanol. It was shown that the solvent has a significant effect on the decomposition of complex. According to EPR-spectroscopy, only cationic part of complex is found upon its dissolution in water; only neutral part is retained in DMSO, and both fragments are present in ethanol. Effective generation of NO occurs in an aqueous solution. The structures of the decomposition products were proposed for all solvents, their UV-spectra and rate constants were calculated. From the experimental and theoretical data obtained, it follows that complex 1 is most stable in DMSO. Solutions of complex in a DMSO-water mixture can be used to improve its bioavailability in further in vitro and in vivo studies. Also, we have analyzed its interaction with glutathione (GSH), which can participate in the metabolism of this compound. This study shows that complex 1 reacts with GSH to form a new binuclear DNIC with two GS--ligands. It was found that the resulting complex is a more prolonged NO-donor than the initial one: k = 6.1∙10-3·s-1 in buffer, k = 6.4∙10-5 s-1 with GSH. This reaction may prevent S-glutathionylation of the essential enzyme systems and is important for metabolism of complex, associated with its antitumor activity.


Assuntos
Dimetil Sulfóxido , Óxidos de Nitrogênio , Etanol , Glutationa/química , Ferro/química , Ligantes , Modelos Teóricos , Óxido Nítrico , Óxidos de Nitrogênio/química , Solventes , Tioureia/análogos & derivados , Água
18.
Biomed Pharmacother ; 147: 112667, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104695

RESUMO

Striatal-enriched protein tyrosine phosphatase (STEP) is a signal transduction protein involved in the pathogenesis of neuropathologies. A STEP inhibitor (TC-2153) has antipsychotic and antidepressant effects. Here, we evaluated the role of STEP in fear-induced aggression using Norway rats selectively bred for 90 generations for either high aggression toward humans (aggressive rats) or its absence (tame rats). We studied the effects of acute administration of TC-2153 on behavior and STEP expression in the brain of these animals and the influence of chronic treatment with TC-2153 on the behavior and STEP expression in aggressive rats in comparison with classic antidepressant fluoxetine, which is known to exert antiaggressive action. Acute TC-2153 administration decreased the aggressive reaction to humans in aggressive rats, while having no impact on the friendly behavior of tame rats. Moreover, in the elevated plus-maze test, the drug had an anxiolytic effect on both aggressive and tame rats. Aggressive rats demonstrated elevated levels of a STEP isoform (STEP46) as compared to tame animals, whereas acute TC-2153 administration significantly reduced STEP46 protein concentration in the brain of aggressive rats. Chronic treatment of aggressive rats with either TC-2153 or fluoxetine attenuated fear-induced aggression. Chronic administration of fluoxetine enhanced the exploratory activity in the elevated plus-maze test and decreased the STEP46 protein level in aggressive rats' hippocampus, whereas chronic TC-2153 administration did not affect these parameters. Thus, STEP46 can play an important role in the mechanisms of aggression and may mediate antiaggressive effects of TC-2153 and fluoxetine.


Assuntos
Agressão/efeitos dos fármacos , Ansiolíticos/farmacologia , Benzotiepinas/farmacologia , Encéfalo/efeitos dos fármacos , Medo/efeitos dos fármacos , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Ratos
19.
Materials (Basel) ; 15(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160764

RESUMO

A simple method for the mechanochemical synthesis of an effective metal-free electrocatalyst for the oxygen reduction reaction was demonstrated. A nitrogen-doped carbon material was obtained by grinding a mixture of graphene oxide and melamine in a planetary ball mill. The resulting material was characterized by XPS, EPR, and Raman and IR spectroscopy. The nitrogen concentration on the N-bmGO surface was 5.5 at.%. The nitrogen-enriched graphene material (NbmGO has half-wave potential of -0.175/-0.09 V and was shown to possess high activity as an electrocatalyst for oxygen reduction reaction. The electrocatalytic activity of NbmGO can be associated with a high concentration of active sites for the adsorption of oxygen molecules on its surface. The high current retention (93% for 12 h) after continuous polarization demonstrates the excellent long-term stability of NbmGO.

20.
J Neurosci Res ; 89(2): 267-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21162133

RESUMO

Freezing reaction (catalepsy) is a natural passive defensive strategy in animals. An exaggerated form of catalepsy is a symptom of grave brain dysfunction. Catalepsy in mice was shown to be linked to the Map3k1, Il6st, Gzmk, and Hspb3 genes as potential candidates for a high predisposition to catalepsy. The study sought to test the hypothesis of an association between catalepsy and expression of these genes in the brain. Thegenes' mRNA levels were measured in the hypothalamus, hippocampus, frontal cortex, striatum, and midbrain of catalepsy-resistant AKR/J strain and catalepsy-prone strains CBA/Lac, ASC (antidepressant-sensitive cataleptic) and the congenic line AKR.CBA-D13M76C. No association between expression of any investigated genes and predisposition to catalepsy was found. At the same time, multivariate analysis revealed interactions among the expressions of Map3k1, Il6st, Gzmk, and Hspb3 genes in the brain structures. A factor analysis of all variables produced two independent factors explaining 76.2% of the total variance. The catalepsy-resistant AKR strain was distinguished from the catalepsy-prone strains CBA, ASC, and AKR.CBA-D13M76C by factor 1. It was suggested that a high predisposition to catalepsy in mice can be defined by the Map3k1, Il6st, Gzmk, and Hspb3 genes' coexpression network.


Assuntos
Receptor gp130 de Citocina/biossíntese , Reação de Congelamento Cataléptica/fisiologia , Redes Reguladoras de Genes/genética , Granzimas/biossíntese , Proteínas de Choque Térmico/biossíntese , MAP Quinase Quinase Quinase 1/biossíntese , Animais , Encéfalo/metabolismo , Receptor gp130 de Citocina/genética , Expressão Gênica , Predisposição Genética para Doença/genética , Genótipo , Granzimas/genética , Proteínas de Choque Térmico/genética , MAP Quinase Quinase Quinase 1/genética , Masculino , Camundongos , Reação em Cadeia da Polimerase , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA