Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 53(1): 225-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123791

RESUMO

Legume plants establish a symbiotic association with bacteria called rhizobia, resulting in the formation of nitrogen-fixing root nodules. A Lotus japonicus symbiotic mutant, sen1, forms nodules that are infected by rhizobia but that do not fix nitrogen. Here, we report molecular identification of the causal gene, SEN1, by map-based cloning. The SEN1 gene encodes an integral membrane protein homologous to Glycine max nodulin-21, and also to CCC1, a vacuolar iron/manganese transporter of Saccharomyces cerevisiae, and VIT1, a vacuolar iron transporter of Arabidopsis thaliana. Expression of the SEN1 gene was detected exclusively in nodule-infected cells and increased during nodule development. Nif gene expression as well as the presence of nitrogenase proteins was detected in rhizobia from sen1 nodules, although the levels of expression were low compared with those from wild-type nodules. Microscopic observations revealed that symbiosome and/or bacteroid differentiation are impaired in the sen1 nodules even at a very early stage of nodule development. Phylogenetic analysis indicated that SEN1 belongs to a protein clade specific to legumes. These results indicate that SEN1 is essential for nitrogen fixation activity and symbiosome/bacteroid differentiation in legume nodules.


Assuntos
Lotus/fisiologia , Proteínas de Membrana/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Simbiose , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Teste de Complementação Genética , Lotus/genética , Lotus/microbiologia , Lotus/ultraestrutura , Proteínas de Membrana/genética , Mutação/genética , Fixação de Nitrogênio/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose/genética
2.
Microbiome ; 9(1): 95, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33910647

RESUMO

BACKGROUND: Validation and standardization of methodologies for microbial community measurements by high-throughput sequencing are needed to support human microbiome research and its industrialization. This study set out to establish standards-based solutions to improve the accuracy and reproducibility of metagenomics-based microbiome profiling of human fecal samples. RESULTS: In the first phase, we performed a head-to-head comparison of a wide range of protocols for DNA extraction and sequencing library construction using defined mock communities, to identify performant protocols and pinpoint sources of inaccuracy in quantification. In the second phase, we validated performant protocols with respect to their variability of measurement results within a single laboratory (that is, intermediate precision) as well as interlaboratory transferability and reproducibility through an industry-based collaborative study. We further ascertained the performance of our recommended protocols in the context of a community-wide interlaboratory study (that is, the MOSAIC Standards Challenge). Finally, we defined performance metrics to provide best practice guidance for improving measurement consistency across methods and laboratories. CONCLUSIONS: The validated protocols and methodological guidance for DNA extraction and library construction provided in this study expand current best practices for metagenomic analyses of human fecal microbiota. Uptake of our protocols and guidelines will improve the accuracy and comparability of metagenomics-based studies of the human microbiome, thereby facilitating development and commercialization of human microbiome-based products. Video Abstract.


Assuntos
Metagenômica , Microbiota , DNA , Humanos , Microbiota/genética , Padrões de Referência , Reprodutibilidade dos Testes , Análise de Sequência de DNA
3.
Mol Plant Microbe Interact ; 19(1): 80-91, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16404956

RESUMO

Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.


Assuntos
Mapeamento Cromossômico , Genes de Plantas/genética , Lotus/genética , Simbiose/genética , Alelos , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Mutação/genética , Fenótipo , Recombinação Genética
4.
Mol Plant Microbe Interact ; 16(8): 663-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12906110

RESUMO

We investigated the efficacy of self-complementary hairpin RNA (hpRNA) expression to induce RNA silencing in the roots and nodules of model legume Lotus japonicus, using hairy root transformation mediated by Agrobacterium rhizogenes. Transgenic lines that express beta-glucuronidase (GUS) by constitutive or nodule-specific promoters were supertransformed by infection of A. rhizogenes harboring constructs for the expression of hpRNAs with sequences complementary to the GUS coding region. GUS activity in more than 60% of the hairy roots was decreased or silenced almost completely. Silencing of the GUS gene was also observed in symbiotic nodules formed on hairy roots in both early and late stages of nodule organogenesis. These results indicate that transient RNA silencing by hairy root transformation provides a powerful tool for loss-of-function analyses of genes that function in roots and root nodules.


Assuntos
Lotus/genética , Raízes de Plantas/genética , Interferência de RNA/fisiologia , RNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Lotus/crescimento & desenvolvimento , Lotus/metabolismo , Conformação de Ácido Nucleico , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA/química , RNA/genética
5.
DNA Res ; 11(4): 263-74, 2004 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-15500251

RESUMO

Gene expression profiles during early stages of formation of symbiotic nitrogen-fixing nodules in a model legume Lotus japonicus were analyzed by means of a cDNA array of 18,144 non-redundant expressed sequence tags (ESTs) isolated from L. japonicus. Expression of a total of 1,076 genes was significantly accelerated during the successive stages that represent infection of Mesorhizobium loti, nodule primordium initiation, nodule organogenesis, and the onset of nitrogen fixation. These include 32 nodulin and nodulinhomolog genes as well as a number of genes involved in the catabolism of photosynthates and assimilation of fixed nitrogen that were previously known to be abundantly expressed in root nodules of many legumes. We also identified a large number of novel nodule-specific or enhanced genes, which include genes involved in many cellular processes such as membrane transport, defense responses, phytohormone synthesis and responses, signal transduction, cell wall synthesis, and transcriptional regulation. Notably, our data indicate that the gene expression profile in early steps of Rhizobium-legume interactions is considerably different from that in subsequent stages of nodule development. A number of genes involved in the defense responses to pathogens and other stresses were induced abundantly in the infection process, but their expression was suppressed during subsequent nodule formation. The results provide a comprehensive data source for investigation of molecular mechanisms underlying nodulation and symbiotic nitrogen fixation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Lotus/genética , Fixação de Nitrogênio/genética , Northern Blotting , Parede Celular/metabolismo , DNA Complementar/genética , Etiquetas de Sequências Expressas , Lotus/citologia , Lotus/crescimento & desenvolvimento , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA de Plantas/genética , Rhizobiaceae/fisiologia , Transdução de Sinais/genética , Simbiose , Transcrição Gênica/genética
6.
Plant Physiol ; 143(3): 1293-305, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17277093

RESUMO

Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix(-) mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8-9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis.


Assuntos
Alphaproteobacteria/fisiologia , Lotus/metabolismo , Proteínas de Membrana/fisiologia , Fixação de Nitrogênio , Proteínas de Plantas/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Sequência de Aminoácidos , Repetição de Anquirina , Membrana Celular/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Proteínas de Fluorescência Verde/análise , Lotus/genética , Lotus/microbiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/análise , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/microbiologia
7.
Plant Cell Physiol ; 47(8): 1102-11, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16816411

RESUMO

ENOD40 is one of the most intriguing early nodulin genes that is known to be induced very early in response to interaction of legume plants with symbiotic Rhizobium bacteria, but its function in the nodulation process is still not known. Lotus japonicus has two ENOD40 genes: LjENOD40-1 is abundantly induced in very early stages of bacterial infection or Nod factor application, whereas LjENOD40-2 is abundantly expressed only in mature nodules. We generated transgenic lines of L. japonicus with an RNAi (RNA interference) construct that expresses hairpin double-stranded RNA for LjENOD40-1 to induce sequence-specific RNA silencing. In the transgenic plants, expression of both LjENOD40-1 and -2 was significantly reduced, and no accumulation of ENOD40 transcripts was detected upon Mesorhizobium loti inoculation. The transgenic plants exhibited very poor nodulation (only 0-2 nodules per plant) and could not grow well without additional nitrogen supply. Analysis of segregation in the T(2) progeny indicated that the suppression of nodulation is perfectly linked with the presence of the transgene. Microscopic observation of the infection process using lacZ-labeled M. loti, together with expression analysis of infection-related nodulin genes, demonstrated that ENOD40 knock-down did not inhibit the initiation of the bacterial infection process. In contrast, nodule primordium initiation and subsequent nodule development were significantly suppressed in the transgenic plants. These results clearly indicate that ENOD40 is required for nodule initiation and subsequent organogenesis, but is not involved in early infection events.


Assuntos
Lotus/fisiologia , Raízes de Plantas/microbiologia , Interferência de RNA/fisiologia , RNA não Traduzido/fisiologia , Rhizobium/fisiologia , Simbiose/fisiologia , Sequência de Bases , Fabaceae , Dados de Sequência Molecular , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , RNA Longo não Codificante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA