Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708882

RESUMO

The reduced dielectric screening in atomically thin two-dimensional materials makes them very sensitive to the surrounding environment, which can be modulated to tune their optoelectronic properties. In this study, we significantly improved the optoelectronic properties of monolayer MoS2by varying the surrounding environment using different liquid dielectrics, each with a specific dielectric constant ranging from 1.89 to 18. Liquid mediums offer the possibility of environment tunability on the same device. For a back-gated field effect transistor, the field effect mobility exhibited more than two-order enhancement when exposed to a high dielectric constant medium. Further investigation into the effect of the dielectric environment on the optoelectronic properties demonstrated a variation in photoresponse relaxation time with the dielectric medium. The rise and decay times were observed to increase and decrease, respectively, with an increase in the dielectric constant of the medium. These results can be attributed to the dielectric screening provided by the surrounding medium, which strongly modifies the charged impurity scattering, the band gap, and defect levels of monolayer MoS2. These findings have important implications for the design of biological and chemical sensors, particularly those operating in a liquid environment. By leveraging the tunability of the dielectric medium, we can optimize the performance of such sensors and enhance their detection capabilities.

2.
Opt Express ; 29(10): 15366-15381, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985237

RESUMO

We show that plasmonic nanowire-nanoparticle systems can perform nonlinear wavelength and modal conversions and potentially serve as building blocks for signal multiplexing and novel trafficking modalities. When a surface plasmon excited by a pulsed laser beam propagates in a nanowire, it generates a localized broadband nonlinear continuum at the nanowire surface as well as at active locations defined by sites where nanoparticles are absorbed (enhancement sites). The local response may couple to new sets of propagating modes enabling a complex routing of optical signals through modal and spectral conversions. Different aspects influencing the optical signal conversions are presented, including the parameters defining the local formation of the continuum and the subsequent modal routing in the nanowire.

3.
Soft Matter ; 17(48): 10903-10909, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34807220

RESUMO

Optical excitation of colloids can be harnessed to realize soft matter systems that are out of equilibrium. In this paper, we present our experimental studies on the dynamics of silica colloids in the vicinity of a silver nanowire propagating surface plasmon polaritons (SPPs). Due to the optothermal interaction, the colloids are directionally pulled towards the excitation point of the nanowire. Having reached this point, they are spatio-temporally trapped around the excitation location. By increasing the concentration of colloids in the system, we observe multi-particle assembly around the nanowire. This process is thermophoretically driven and assisted by the SPPs. Furthermore, we find such an assembly to be sensitive to the excitation polarization at the input of the nanowire. Numerically-simulated temperature distribution around an illuminated nanowire corroborates sensitivity to the excitation polarization. Our study will find relevance in exploration of SPP-assisted optothermal pulling, trapping and assembly of colloids, and can serve as a test-bed of plasmon-driven active matter.

4.
Angew Chem Int Ed Engl ; 59(31): 13079-13085, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32367621

RESUMO

Room-temperature phosphorescence of metal and heavy atom-free organic molecules has emerged as an area of great potential in recent years. A rational design played a critical role in controlling the molecular ordering to impart efficient intersystem crossing and stabilize the triplet state to achieve room-temperature ultralong phosphorescence. However, in most cases, the strategies to strengthen phosphorescence efficiency have resulted in a reduced lifetime, and the available nearly degenerate singlet-triplet energy levels impart a natural competition between delayed fluorescence and phosphorescence, with the former one having the advantage. Herein, an organic helical assembly supports the exhibition of an ultralong phosphorescence lifetime. In contrary to other molecules, 3,6-phenylmethanone functionalized 9-hexylcarbazole exhibits a remarkable improvement in phosphorescence lifetime (>4.1 s) and quantum yield (11 %) owing to an efficient molecular packing in the crystal state. A right-handed helical molecular array act as a trap and exhibits triplet exciton migration to support the exceptionally longer phosphorescence lifetime.

5.
Nano Lett ; 18(1): 650-655, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29244518

RESUMO

We report on the experimental observation of differential wavevector distribution of surface-enhanced Raman scattering (SERS) and fluorescence from dye molecules confined to a gap between plasmonic silver nanowire and a thin, gold mirror. The fluorescence was mainly confined to higher values of in-plane wavevectors, whereas SERS signal was uniformly distributed along all the wavevectors. The optical energy-momentum spectra from the distal end of the nanowire revealed strong polarization dependence of this differentiation. All these observations were corroborated by full-wave three-dimensional numerical simulations, which further revealed an interesting connection between out-coupled wavevectors and parameters such as hybridized modes in the gap-plasmon cavity, and orientation and location of molecular dipoles in the geometry. Our results reveal a new prospect of discriminating electronic and vibrational transitions in resonant dye molecules using a subwavelength gap plasmonic cavity in the continuous-wave excitation limit, and can be further harnessed to engineer molecular radiative relaxation processes in momentum space.

6.
Opt Lett ; 43(11): 2474-2477, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856407

RESUMO

Spin-orbit interactions are subwavelength phenomena that can potentially lead to numerous device-related applications in nanophotonics. Here, we report the spin-Hall effect in the forward scattering of Hermite-Gaussian (HG) and Gaussian beams from a plasmonic nanowire. Asymmetric scattered radiation distribution was observed for circularly polarized beams. Asymmetry in the scattered radiation distribution changes the sign when the polarization handedness inverts. We found a significant enhancement in the spin-Hall effect for a HG beam compared to a Gaussian beam for constant input power. The difference between scattered powers perpendicular to the long axis of the plasmonic nanowire was used to quantify the enhancement. In addition, the nodal line of the HG beam acts as the marker for the spin-Hall shift. Numerical calculations corroborate experimental observations and suggest that the spin flow component of the Poynting vector associated with the circular polarization is responsible for the spin-Hall effect and its enhancement.

7.
Opt Lett ; 43(4): 923-926, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29444028

RESUMO

Vertical nanowires facilitate an innovative mechanism to channel the optical field in the orthogonal direction and act as a nanoscale light source. Subwavelength, vertically oriented nanowire platforms, both of plasmonic and semiconducting variety, can facilitate interesting far-field emission profiles and potentially carry orbital angular momentum states. Motivated by these prospects, in this Letter, we show how a hybrid plasmonic-organic platform can be harnessed to engineer far-field radiation. The system that we have employed is an organic nanowire made of diaminoanthroquinone grown on a plasmonic gold film. We experimentally and numerically studied angular distribution of surface plasmon polariton mediated emission from a single, vertical organic nanowire by utilizing evanescent excitation and Fourier plane microscopy. Photoluminescence and elastic scattering from a single nanowire was analyzed individually in terms of inplane momentum states of the outcoupled photons. We found that the emission is doughnut-shaped in both photoluminescence and elastic scattering regimes. We anticipate that the discussed results can be relevant in designing efficient, polariton-mediated nanoscale photon sources that can carry orbital angular momentum states.

8.
Appl Opt ; 57(21): 5914-5922, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30118013

RESUMO

Directional harmonic generation is an important property characterizing the ability of nonlinear optical antennas to diffuse the signal in a well-defined region of space. Herein, we show how sub-wavelength facets of an organic molecular mesowire crystal can be utilized to systematically vary the directionality of second-harmonic generation (SHG) in the forward-scattering geometry. We demonstrate this capability on crystalline diamonoanthraquinone (DAAQ) mesowires with sub-wavelength facets. We observed that the radial angles of the SHG emission can be tuned over a range of 130 deg. This angular variation arises due to spatially distributed nonlinear dipoles in the focal volume of the excitation as well as the geometrical cross section and facet orientation of the mesowire. Numerical simulations of the near-field excitation profile corroborate the role of the mesowire geometry in localizing the electric field. In addition to directional SHG from the mesowire, we experimentally observe optical waveguiding of the nonlinear two-photon excited fluorescence (TPEF). Interestingly, we observed that for a given pump excitation, the TPEF signal is isotropic and delocalized, whereas the SHG emission is directional and localized at the location of excitation. All the observed effects have direct implications not only in active nonlinear optical antennas but also in nonlinear signal processing.

9.
Faraday Discuss ; 186: 95-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26765282

RESUMO

We discuss two aspects of the plasmofluidic assembly of plasmonic nanostructures at the metal-fluid interface. First, we experimentally show how three and four spot evanescent-wave excitation can lead to unconventional assembly of plasmonic nanoparticles at the metal-fluid interface. We observed that the pattern of assembly was mainly governed by the plasmon interference pattern at the metal-fluid interface, and further led to interesting dynamic effects within the assembly. The interference patterns were corroborated by 3D finite-difference time-domain simulations. Secondly, we show how anisotropic geometry, such as Ag nanowires, can be assembled and aligned in unstructured and structured plasmofluidic fields. We found that by structuring the metal-film, Ag nanowires can be aligned at the metal-fluid interface with a single evanescent-wave excitation, thus highlighting the prospect of assembling plasmonic circuits in a fluid. An interesting aspect of our method is that we obtain the assembly at locations away from the excitation points, thus leading to remote assembly of nanostructures. The results discussed herein may have implications in realizing a platform for reconfigurable plasmonic metamaterials, and a test-bed to understand the effect of plasmon interference on assembly of nanostructures in fluids.

10.
Appl Opt ; 51(11): 1688-93, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22505158

RESUMO

Plasmonic nanodimers facilitate electromagnetic hotspots at their gap junction. By loading these gap junctions with nanomaterials, the plasmonic properties of nanodimer can be varied. In this study, we bridged the gap junction of gold (Au) nanocylinder dimer with palladium (Pd), and numerically evaluated the plasmonic properties of the designed nanostructure. We simulated the far-field extinction spectra of Pd bridged Au nanocylinder dimer, and identified the dipole and quadrupole plasmon modes at 839 and 578 nm, respectively. By varying the geometrical parameters of the Pd bridge, we revealed the ability to tune the dipolar plasmon resonance of the bridged dimer. Further, we exploited the hydrogen sensitivity of Pd bridge to harness the bridged-Au dimer as nanoplasmonic hydrogen sensor. Such nano-optical detection platforms have minimal spatial footprint and can be further harnessed for chip-based plasmonic sensing.

13.
J Phys Chem Lett ; 12(49): 11910-11918, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878793

RESUMO

Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single-molecule spectroscopic signatures. Facilitating this capability in optically trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ the bianalyte SERS technique to ascertain the single molecule statistical signatures and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power (≈ 0.1 mW/µm2) tweezer platform to trap a single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments and to be potentially adapted as an in vivo plasmonic tweezer.

14.
J Phys Chem Lett ; 12(28): 6589-6595, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34242502

RESUMO

We report on the experimental observation of beaming elastic and surface enhanced Raman scattering (SERS) emission from a bent-nanowire on a mirror (B-NWoM) cavity. The system was probed with polarization resolved Fourier plane and energy-momentum imaging to study the spectral and angular signature of the emission wavevectors. The out-coupled elastically scattered light from the kink occupies a narrow angular spread. We used a self-assembled monolayer of molecules with a well-defined molecular orientation to utilize the out-of-plane electric field in the cavity for enhancing Raman emission from the molecules and in achieving beaming SERS emission. Calculated directionality for elastic scattering and SERS emission was found to be 16.2 and 12.5 dB, respectively. The experimental data were corroborated with three-dimensional numerical finite element and finite difference time domain based numerical simulations. The results presented here may find relevance in understanding coupling of emitters with elongated plasmonic cavities and in designing on-chip optical antennas.

15.
J Phys Condens Matter ; 33(1): 015701, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33034303

RESUMO

Chiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials. Here, we report the observation of photonic spin-momentum locking in the form of directional and chiral emission from achiral quantum dots (QDs) evanescently coupled to achiral hyperbolic metamaterials (HMM). Efficient coupling between QDs and the metamaterial leads to emergence of these photonic topological modes which can be detected in the far field. We provide theoretical explanation for the emergence of spin-momentum locking through rigorous modeling based on photon Green's function where pseudo spin of light arises from coupling of QDs to evanescent modes of HMM.

16.
J Phys Condens Matter ; 32(32): 324002, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235046

RESUMO

Light-activated colloidal assembly and swarming can act as model systems to explore non-equilibrium state of matter. In this context, creating new experimental platforms to facilitate and control two-dimensional assembly of colloidal crystals are of contemporary interest. In this paper, we present an experimental study of assembly of colloidal silica microparticles in the vicinity of a single-crystalline gold microplate evanescently excited by a 532 nm laser beam. The gold microplate acts as a source of heat and establishes a thermal gradient in the system. The created optothermal potential assembles colloids to form a two-dimensional poly-crystal, and we quantify the coordination number and hexagonal packing order of the assembly in such a driven system. Our experimental investigation shows that for a given particle size, the variation in assembly can be tuned as a function of excitation-polarization and surface to volume ratio of the gold microplates. Furthermore, we observe that the assembly is dependent on size of the particle and its material composition. Specifically, silica colloids assemble but polystyrene colloids do not, indicating an intricate behaviour of the forces under play. Our work highlights a promising direction in utilizing metallic microstructures that can be harnessed for optothermal colloidal crystal assembly and swarming studies. Our experimental system can be utilized to explore optically driven matter and photophoretic interactions in soft-matter including biological systems such as cells and micro organisms.

17.
Chemphyschem ; 10(15): 2670-3, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19750533

RESUMO

We report herein a simple, inexpensive fabrication methodology of salt microwells, and define the utility of the latter as nanoparticle containers for highly sensitive surface-enhanced Raman scattering (SERS) studies. AFM characterization of Ag and Au loaded salt microwells reveal the ability to contain favorable nanostructures such as nanoparticle dimers, which can significantly enhance the Raman intensity of molecules. By performing diffraction-limited confocal Raman microscopy on salt microwells, we show high sensitivity and fidelity in the detection of dyes, peptides, and proteins, as a proof of our concept. The SERS limit of detection (accumulation time of 1 s) for rhodamine B and TAT contained in salt mircowells is 10 pM and 1 nM, respectively. The Raman characterization measurements of salt microwells with three different laser lines (532 nm, 632.81 nm, 785 nm) reveal low background intensity and high signal-to-noise ratio upon nanoparticle loading, which makes them suitable for enhanced Raman detection. SERS mapping of these sub-femtoliter containers show spatial confinement of the relevant analyte to a few microns, which make them potential candidates for microscale bioreactors.


Assuntos
Sais/química , Análise Espectral Raman , Ouro/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica , Rodaminas/química , Prata/química
18.
Chem Biol ; 14(6): 645-57, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17584612

RESUMO

Reversible acetylation of histone and nonhistone proteins plays pivotal role in cellular homeostasis. Dysfunction of histone acetyltransferases (HATs) leads to several diseases including cancer, neurodegenaration, asthma, diabetes, AIDS, and cardiac hypertrophy. We describe the synthesis and characterization of a set of p300-HAT-specific small-molecule inhibitors from a natural nonspecific HAT inhibitor, garcinol, which is highly toxic to cells. We show that the specific inhibitor selectively represses the p300-mediated acetylation of p53 in vivo. Furthermore, inhibition of p300-HAT down regulates several genes but significantly a few important genes are also upregulated. Remarkably, these inhibitors were found to be nontoxic to T cells, inhibit histone acetylation of HIV infected cells, and consequently inhibit the multiplication of HIV.


Assuntos
Fármacos Anti-HIV , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores Enzimáticos , Expressão Gênica/efeitos dos fármacos , HIV-1 , Histona Acetiltransferases/antagonistas & inibidores , Terpenos , Fatores de Transcrição/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Acetilação , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Proteínas de Ciclo Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Cromatina/genética , Regulação para Baixo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/fisiologia , Células HeLa , Histona Acetiltransferases/genética , Histonas/genética , Humanos , Modelos Moleculares , Estrutura Molecular , Linfócitos T/virologia , Terpenos/síntese química , Terpenos/química , Terpenos/farmacologia , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Fatores de Transcrição de p300-CBP
19.
J Phys Chem B ; 112(21): 6703-7, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18461904

RESUMO

We report, for the first time, the surface-enhanced Raman spectra of an important enzyme, coactivator-associated arginine methyltransferase 1 (CARM1), involved in various biological activities such as tumor suppressor function and stem cell differentiation. We have employed surface-enhanced Raman scattering (SERS) to obtain insight into the structural details of CARM1 by adsorbing it to silver (Ag) nanoparticles. The enzyme retains its activity even after its adsorption onto Ag nanoparticles. We observe strong SERS modes arising from amide vibrations and aromatic ring amino acids. The SERS spectra revealed amide I bands at 1637 cm(-1) and 1666 cm(-1), which arise as a result of the alpha helix of the protein and the polypeptide backbone vibration of a random coil, respectively. In order to confirm the amide vibrations, we have performed SERS on deuterated CARM1, which exhibits a clear red shift in amide band positions. The SERS spectra may provide useful information, which could be harnessed to study the functional interactions of CARM1 with small molecule modulators.


Assuntos
Metiltransferases/química , Análise Espectral Raman/métodos , Adsorção , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Nanopartículas , Proteína-Arginina N-Metiltransferases , Proteínas Recombinantes/química
20.
J Phys Chem B ; 111(41): 11877-9, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17894486

RESUMO

Reversible acetylation of histone and non-histone proteins plays an important role in the regulation of gene expression and cellular homeostasis. A balance between acetylation and deacetylation of these proteins are maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Among different HATs, p300/CBP is the most widely studied chromatin modifying enzymes. p300 is involved in several physiological processes like cell growth, regulation of gene expression, development, and tumor suppressor, and therefore its dysfunction causes different diseases. The autoacetylation of p300 is one of the key regulators of its catalytic activity. Mechanistically, autoacetylation induced structural changes in the p300 HAT domain acts as a master switch. In this report, we have shown that the natural HAT inhibitor garcinol could potently inhibit the autoacetylation activity. Furthermore, for the first time, we demonstrate that indeed autoacetylation induces structural changes in p300 HAT domain, as probed by surface-enhanced Raman scattering. Presumably, SERS will be a very useful tool to find out the structural changes in the other self-modifying enzymes like kinases and methyltransferases.


Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Espectral Raman , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA