Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(10): 913, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254782

RESUMO

Soil efflux of CO2 ( F CO 2 ) is known to be dependent on natural drying and rewetting of the soil. Although the central Indian Himalayan region is predominantly occupied with two ecosystems, i. e. Pine (Pinus roxburghii) and Oak (Quercus leucotrichophora), differences in their F CO 2  dynamics and responses of F CO 2  to varying wet and dry spells were hardly known. To address this knowledge gap, this study provides a comparative assessment of F CO 2  variability from Pine and Oak ecosystems of central Himalaya as a response to rainfall induced wet and dry spells of monsoon and winter seasons. The F CO 2  data presented in this study are collected for 242 days of 2021-22 that include monsoon and winter seasons from a Pine and an Oak sites. The mean F CO 2 s of Pine and Oak sites are found to be 3.95(± 0.02) and 3.61(± 0.01) µmol.m-2.s-1, respectively. We find that the winter reduction in the F CO 2  in comparison to monsoon at the Pine site (78%) is more substantial than at Oak site (64.6%). The cross wavelet spectra of F CO 2  and monsoon rainfall amount at the Oak site, unlike the Pine site, indicate a negative relationship. The rainfall spell duration and amount of monsoon wet spells are noted to have an inverse relationship with F CO 2  at both sites, although, increasing rainfall spell duration in winter is noted to increase F CO 2  at Pine and Oak sites. Similarly, increasing F CO 2  is observed with increasing dry spells of monsoon at both sites. Results of this study indicate that in comparison to Oak, F CO 2  variability at Pine ecosystem is primarily driven by abiotic factors wherein wet spell is a major determinant.


Assuntos
Dióxido de Carbono , Ecossistema , Monitoramento Ambiental , Pinus , Quercus , Chuva , Estações do Ano , Solo , Solo/química , Dióxido de Carbono/análise , Índia
2.
Environ Monit Assess ; 195(7): 827, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294356

RESUMO

The Chir-Pine (Pinus roxburghii) and Banj-Oak (Quercus leucotrichophora)-dominated ecosystems of central Himalaya provide significant green services. However, responses of these ecosystems, with respect to ecosystem carbon flux variability, to changing microclimate are not yet studied. Since quantification of ecosystem responses to fluctuation in the microclimate, particularly rainfall, is expected to be beneficial for management of these ecosystems, this study aims (i) to quantify and compare amplitude of rainfall-induced change in the carbon fluxes of Chir-Pine and Banj-Oak-dominated ecosystems using wavelet methods, and (ii) to quantify and compare dissimilarities in the ecosystem exchanges due to varying rainfall spell and amount. Eddy covariance-based continuous daily micrometeorological and flux data, during the 2016-2017 monsoon seasons (total 244 days, 122 days of June-September), from two sites in Uttarakhand, India, are used for this purpose. We find that both Chir-Pine and Banj-Oak-dominated ecosystems are the sinks of carbon, and Chir-Pine-dominated ecosystem sequesters around 1.8 times higher carbon than the Banj-Oak. A systematic enhancement in the carbon assimilation of the Chir-Pine-dominated ecosystem is noted with increasing rainfall spell following a statistically significant power-law relationship. We have also identified a rainfall amount threshold for Chir-Pine and Banj-Oak-dominated ecosystems (10 ± 0.7 and 17 ± 1.2 mm, respectively) that resulted in highest ecosystem carbon assimilation in monsoon. The general inference of this study accentuates that Banj-Oak-dominated ecosystem is more sensitive to maximum rain within a spell whereas the Chir-Pine-dominated ecosystem is more responsive to increasing rainfall spell duration.


Assuntos
Pinus , Quercus , Ecossistema , Quercus/fisiologia , Estações do Ano , Carbono , Árvores/fisiologia , Monitoramento Ambiental , Florestas
3.
Ambio ; 37(4): 286-91, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18686508

RESUMO

A study was carried out to discover trends in the rainfall and temperature pattern of the Alaknanda catchment in the Central Himalaya. Data on the annual rainfall, monsoon rainfall for the last decade, and average annual temperatures over the last few decades were analyzed. Nonparametric methods (Mann-Kendall and Sen's method) were employed to identify trends. The Mann-Kendall test shows a decline in rainfall and rise in temperature, and these trends were found to be statistically significant at the 95% confidence level for both transects. Sen's method also confirms this trend. This aspect has to be considered seriously for the simple reason that if the same trend continues in the future, more chances of drought are expected. The impact of climate change has been well perceived by the people of the catchment, and a coping mechanism has been developed at the local level.


Assuntos
Clima , Chuva , Temperatura , Índia , Estatísticas não Paramétricas
4.
Sci Rep ; 7(1): 11439, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900236

RESUMO

We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA