Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2309100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193261

RESUMO

Engineering advanced functional materials such as Anatase crystals through the molecular tuning of crystal facets is the current enigma of interest pertinent to solving the structure-property-performance triad. Developing optimal shapes and sizes of crystallite necessitates exploring the nanoscopic growth mechanism via precursor tracking. Here, the tapestry of particles varying in dimensionality (0D-3D), sizes (8-3000 nm), and morphology (aggregated to highly faceted crystals) is generated. To decipher and subsequently modulate the crystallization pathways, high-resolution microscopy (high-resolution transmission electron microscopy(HRTEM) and field emission scanning electron microscopy(FESEM)) is used to sketch time-stamped particle evolution. Interestingly, the studies provide evidence for 4-distinct mechanisms where nanoparticles/nanosheets play direct and/or indirect roles in crystallization through multi-stage aggregation (primary, secondary, and tertiary) beginning with similar growth solutions. The four distinct pathways elucidate bulk particle formation via non-classical routes of crystallization including nanosheet alignment and aggregation, nanocrystallite formation and fusion, nanobeads formation and attachment, and direct nanosheet incorporation in bulk crystals. Notably, the direct evidence of flexible-partially-ordered nanosheets being subsumed along the contours of bulk crystals is captured. These novel syntheses generated uniquely faceted particles with high-indexed surface planes such as (004), (200), and (105), amenable to photocatalytic applications.

2.
Molecules ; 26(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073510

RESUMO

Broad industrial application of zeolites increases the opportunity of inhalation. However, the potential impact of different types and compositions of zeolite on cytotoxicity is still unknown. Four types of synthetic zeolites have been prepared for assessing the effect on lung fibroblast: two zeolite L (LTL-R and LTL-D), ZSM-5 (MFI-S), and faujasite (FAU-S). The cytotoxicity of zeolites on human lung fibroblast (IMR-90) was assessed using WST1 cell proliferation assay, mitochondrial function, membrane leakage of lactate dehydrogenase, reduced glutathione levels, and mitochondrial membrane potential were assessed under control. Intracellular changes were examined using transmission electron microscopy (TEM). Toxicity-related gene expressions were evaluated by PCR array. The result showed significantly higher toxicity in IMR-90 cells with FAU-S than LTL-R, LTL-D and MFI-S exposure. TEM showed FAU-S, spheroidal zeolite with a low Si/Al ratio, was readily internalized forming numerous phagosomes in IMR-90 cells, while the largest and disc-shaped zeolites showed the lowest toxicity and were located in submembranous phagosomes in IMR-90 cells. Differential expression of TNF related genes was detected using PCR arrays and confirmed using qRT-PCR analysis of selected genes. Collectively, the exposure of different zeolites shows different toxicity on IMR-90 cells.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Zeolitas/toxicidade , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glutationa/metabolismo , Humanos , Nanoestruturas , Reação em Cadeia da Polimerase , Difração de Raios X , Zeolitas/farmacologia
3.
J Am Chem Soc ; 141(51): 20155-20165, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31751124

RESUMO

Organic structure-directing agents (OSDAs) are exploited in the crystallization of microporous materials to tailor the physicochemical properties of the resulting zeolite for applications ranging from separations to catalysis. The rational design of these OSDAs often entails the identification of molecules with a geometry that is commensurate with the channels and cages of the target zeolite structure. Syntheses tend to employ only a single OSDA, but there are a few examples where two or more organics operate synergistically to yield a desired product. Using a combination of state-of-the-art characterization techniques and molecular modeling, we show that the coupling of N,N,N-trimethyl-1,1-adamantammonium and 1,2-hexanediol, each yielding distinct zeolites when used alone, results in the cooperative direction of a third structure, HOU-4, with the mordenite framework type (MOR). Rietveld refinement using synchrotron X-ray diffraction data reveals the spatial arrangement of the organics in the HOU-4 crystals, with amines located in the large channels and alcohols oriented in the side pockets lining the one-dimensional pores. These results are in excellent agreement with molecular dynamics calculations, which predict similar spatial distributions of organics with an energetically favorable packing density that agrees with experimental measurements of OSDA loading, as well as with solid-state two-dimensional 27Al{29Si}, 27Al{1H}, and 13C{1H} NMR correlation spectra, which establish the proximities and interactions of occluded OSDAs. A combination of high-resolution transmission electron microscopy and atomic force microscopy is used to quantify the size of the HOU-4 crystals, which exhibit a platelike morphology, and to index the crystal facets. Our findings reveal that the combined OSDAs work in tandem to produce ultrathin, nonfaulted HOU-4 crystals that exhibit improved catalytic activity for cumene cracking in comparison to mordenite crystals prepared via conventional syntheses. This novel demonstration of cooperativity highlights the potential possibilities for expanding the use of dual structure-directing agents in zeolite synthesis.

4.
Angew Chem Int Ed Engl ; 58(44): 15712-15716, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31472031

RESUMO

Differentiating mechanisms of zeolite crystallization is challenging owing to the vast number of species in growth solutions. The presence of amorphous colloidal particles is ubiquitous in many zeolite syntheses, and has led to extensive efforts to understand the driving force(s) for their self-assembly and putative roles in processes of nucleation and growth. In this study, we use a combination of in situ scanning probe microscopy, particle dissolution measurements, and colloidal stability assays to elucidate the degree to which silica nanoparticles evolve in their structure during the early stages of silicalite-1 synthesis. We show how changes in precursor structure are mediated by the presence of organics, and demonstrate how these changes lead to significant differences in precursor-crystal interactions that alter preferred modes of crystal growth. Our findings provide guidelines for selectively controlling silicalite-1 growth by particle attachment or monomer addition, thus allowing for the manipulation of anisotropic rates of crystallization. In doing so, we also address a longstanding question regarding what factors are at our disposal to switch from a nonclassical to classical mechanism.

5.
Angew Chem Int Ed Engl ; 56(2): 535-539, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27936290

RESUMO

Nanoscale crystal growth control is crucial for tailoring two-dimensional (2D) zeolites (crystallites with thickness less than two unit cells) and thicker zeolite nanosheets for applications in separation membranes and as hierarchical catalysts. However, methods to control zeolite crystal growth with nanometer precision are still in their infancy. Herein, we report solution-based growth conditions leading to anisotropic epitaxial growth of 2D zeolites with rates as low as few nanometers per day. Contributions from misoriented surface nucleation and rotational intergrowths are eliminated. Growth monitoring at the single-unit-cell level reveals novel nanoscale crystal-growth phenomena associated with the lateral size and surface curvature of 2D zeolites.

6.
J Am Chem Soc ; 137(40): 13007-17, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26376337

RESUMO

Many synthetic and natural crystalline materials are either known or postulated to grow via nonclassical pathways involving the initial self-assembly of precursors that serve as putative growth units for crystallization. Elucidating the pathway(s) by which precursors attach to crystal surfaces and structurally rearrange (postattachment) to incorporate into the underlying crystalline lattice is an active and expanding area of research comprising many unanswered fundamental questions. Here, we examine the crystallization of SSZ-13, which is an aluminosilicate zeolite that possesses exceptional physicochemical properties for applications in separations and catalysis (e.g., methanol upgrading to chemicals and the environmental remediation of NO(x)). We show that SSZ-13 grows by two concerted mechanisms: nonclassical growth involving the attachment of amorphous aluminosilicate particles to crystal surfaces and classical layer-by-layer growth via the incorporation of molecules to advancing steps on the crystal surface. A facile, commercially viable method of tailoring SSZ-13 crystal size and morphology is introduced wherein growth modifiers are used to mediate precursor aggregation and attachment to crystal surfaces. We demonstrate that small quantities of polymers can be used to tune crystal size over 3 orders of magnitude (0.1-20 µm), alter crystal shape, and introduce mesoporosity. Given the ubiquitous presence of amorphous precursors in a wide variety of microporous crystals, insight of the SSZ-13 growth mechanism may prove to be broadly applicable to other materials. Moreover, the ability to selectively tailor the physical properties of SSZ-13 crystals through molecular design offers new routes to optimize their performance in a wide range of commercial applications.

7.
J Am Chem Soc ; 135(17): 6608-17, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23570284

RESUMO

Tailoring the anisotropic growth rates of materials to achieve desired structural outcomes is a pervasive challenge in synthetic crystallization. Here we discuss a method to selectively control the growth of zeolite crystals, which are used extensively in a wide range of industrial applications. This facile method cooperatively tunes crystal properties, such as morphology and surface architecture, through the use of inexpensive, commercially available chemicals with specificity for binding to crystallographic surfaces and mediating anisotropic growth. We examined over 30 molecules as potential zeolite growth modifiers (ZGMs) of zeolite L (LTL type) crystallization. ZGM efficacy was quantified through a combination of macroscopic (bulk) and microscopic (surface) investigations that identified modifiers capable of dramatically altering the cylindrical morphology of LTL crystals. We demonstrate an ability to tailor properties critical to zeolite performance, such as external porous surface area, crystal shape, and pore length, which can enhance sorbate accessibility to LTL pores, tune the supramolecular organization of guest-host composites, and minimize the diffusion path length, respectively. We report that a synergistic combination of ZGMs and the judicious adjustment of synthesis parameters produce LTL crystals with unique surface features, and a range of length-to-diameter aspect ratios spanning 3 orders of magnitude. A systematic examination of different ZGM structures and molecular compositions (i.e., hydrophobicity and binding moieties) reveal interesting physicochemical properties governing their efficacy and specificity. Results of this study suggest this versatile strategy may prove applicable for a host of framework types to produce unrivaled materials that have eluded more conventional techniques.


Assuntos
Zeolitas/química , Aminas/química , Cristalização , Microscopia Eletrônica , Modelos Moleculares , Porosidade , Relação Estrutura-Atividade , Propriedades de Superfície , Difração de Raios X
9.
Nat Commun ; 9(1): 2129, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844357

RESUMO

Zeolite crystallization occurs by multifaceted processes involving molecule attachment and nonclassical pathways governed by the addition of amorphous precursors. Here, we use scanning probe microscopy to monitor zeolite LTA crystallization in situ with a spatiotemporal resolution that captures dynamic processes in real time. We report a distinctive pathway involving the formation of gel-like islands from supersaturated solutions comprised of (alumino)silicate molecules. Three-dimensional assembly and evolution of these islands constitutes a unique mode of growth that differs from classical theories. Time-resolved imaging also reveals that growth can occur by (nearly) oriented attachment. At later stages of crystallization, a progressive transition to lower supersaturation shifts growth to a layered mechanism involving two-dimensional nucleation and spreading of layers. Here, we show that LTA crystallization occurs by multiple pathways, thereby reconciling putative hypotheses of growth mechanisms while also highlighting new modes of nonclassical crystallization that may prove relevant to other zeolites and related materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA