Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957095

RESUMO

The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature. The findings reveal that the BSA-DTAB suspension undergoes gelation with increasing temperature but only at lower concentrations of DTAB, where the presence of the surfactant facilitates gelation (associative effect). Conversely, as the surfactant concentration increases beyond a critical value, temperature-driven gelation of the BSA-DTAB system is completely inhibited, despite surfactant-induced protein denaturation (counter-balancing effect). To conceptualize these results, we compared them with observations made in a system comprising protein and a similarly charged surfactant, sodium dodecyl sulfate (SDS). It has been further demonstrated that the anionic surfactant (SDS) can restrict protein gelation at much lower concentration compared to the cationic surfactant (DTAB). The evolution of the structure and interaction during gel formation/inhibition has been examined to understand the underlying mechanism guiding these sol-gel transitions. We present a comprehensive phase diagram, encompassing the solution/gel states of the protein-surfactant dispersion, with respect to the dispersion temperature, surfactant concentration, and ionic behavior (anionic or cationic) of the surfactants.

2.
Phys Chem Chem Phys ; 26(22): 16218-16233, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38804505

RESUMO

The micellization of choline-based anionic surface-active ionic liquids (SAILs) having lauroyl sarcosinate [Sar]-, dodecylsulfate [DS]-, and deoxycholate [Doc]- as counter-ions was investigated in an aqueous medium. Density functional theory (DFT) was employed to investigate the net interactional energy (Enet), extent of non-covalent interactions, and band gap of the choline-based SAILs. The critical micelle concentration (cmc) along with various parameters related to the surface adsorption, counter-ion binding (ß), and polarity of the cores of the micelles were deduced employing surface tension measurements, conductometric titrations and fluorescence spectroscopy, respectively. A dynamic light scattering (DLS) system equipped with zeta-potential measurement set-up and small-angle neutron scattering (SANS) were used to predict the size, zeta-potential, and morphology, respectively, of the formed micelles. Thermodynamic parameters such as standard Gibb's free energy and standard enthalpy change of micellization were calculated using isothermal titration calorimetry (ITC). Upon comparing with sodium salt analogues, it was established that the micellization was predominantly governed by the extent of hydration of [Cho]+, the head groups of the respective anions, and the degree of counter-ion binding (ß). Considering the concentration dependence of the enzyme-SAIL interactions, aqueous solutions of the synthesized SAILs at two different concentrations (below and above the cmc) were utilized as the medium for testing the enzymatic activity of cellulase. The activity of cellulase was found to be ∼7- to ∼13-fold higher compared to that observed in buffers in monomeric solutions of the SAILs and followed the order: [Cho][Sar] > [Cho][DS] > [Cho][Doc]. In the micellar solution, a ∼4- to 5-fold increase in enzymatic activity was observed.


Assuntos
Celulase , Colina , Líquidos Iônicos , Micelas , Água , Líquidos Iônicos/química , Colina/química , Colina/análogos & derivados , Celulase/química , Celulase/metabolismo , Água/química , Termodinâmica , Tensoativos/química , Teoria da Densidade Funcional
3.
Langmuir ; 39(33): 11582-11595, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552854

RESUMO

The aggregation behavior of the surface-active ionic liquid (SAIL), 3-(2-(hexadecyloxy)-2-oxoethyl)-1-methyl-1H-imidazol-3-ium chloride, [C16Emim][Cl], and a gemini surfactant (GS) (14-2-14) in the whole mole fraction range has been investigated in an aqueous medium employing various techniques. Experimentally obtained values of critical aggregation concentration (cac) are in good agreement with the theoretical cac values obtained using Clint's equation. Rubingh's model has been employed to evaluate the extent of synergistic interactions between two components, which has been found to be dependent upon the composition of a mixture of surfactants. The polarity index, hydrodynamic diameter (Dh), zeta potential (ζ-Pot.), and morphology of the aggregates have been found to be dependent upon the extent of hydrophobic as well as dipolar interactions and the degree of counterion binding governed by the content of the GS in mixed aggregates. Thermodynamic parameters evaluated employing isothermal titration calorimetry have revealed the aggregation as an entropy-driven process. Density functional theory calculations provide a detailed account of the SAIL-GS interactions at the molecular level. The reduced density gradient (RDG) along with the calculated isosurfaces asserts that the dominant interactions are noncovalent interactions. Furthermore, the enzymology of cytochrome-c in the aqueous SAIL-GS aggregated systems has been investigated and a two-fold increase in the enzyme activity has been observed in the aggregates formed by the GS as compared to that in buffer.

4.
Phys Chem Chem Phys ; 25(33): 22130-22144, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37563993

RESUMO

Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments have been carried out to study the competitive effects of NaCl and sodium dodecyl sulfate (SDS) surfactant on the evolution of the structure and interactions in a silica nanoparticle-Bovine serum albumin (BSA) protein system. The unique advantage of contrast-matching SANS has been utilized to particularly probe the structure of nanoparticles in the multi-component system. Silica nanoparticles and BSA protein both being anionic remain largely individual in the solution without significant adsorption. The non-adsorbing nature of protein is known to cause depletion attraction between nanoparticles at higher protein concentrations. The nanoparticles undergo immediate aggregation in the nanoparticle-BSA system on the addition of a small amount of salt [referred as the critical salt concentration (CSC)], much less than that required to induce aggregation in a pure nanoparticle dispersion. The salt ions screen the electrostatic repulsion between the nanoparticles, whereby the BSA-induced depletion attraction dominates the system and contributes to the nanoparticle aggregation of a mass fractal kind of morphology. Further, the addition of SDS in this system interestingly suppresses nanoparticle aggregation for salt concentrations lower than the CSC. The presence of SDS gives rise to additional electrostatic repulsion in the system by binding with the BSA protein via electrostatic and hydrophobic interactions. For salt concentrations higher than the CSC, the formation of clusters of nanoparticles is inevitable even in the presence of protein-surfactant complexes, but the mass fractal kind of branched aggregates transform to surface fractals. This has been attributed to the BSA-SDS complex induced depletion attraction along with salt-driven screening of electrostatic repulsion. Thus, the interplay of depletion and electrostatic and hydrophobic interactions has been utilized to tune the structures formed in a multicomponent silica nanoparticle-BSA-SDS/NaCl system.


Assuntos
Nanopartículas , Surfactantes Pulmonares , Tensoativos/química , Cloreto de Sódio , Nanopartículas/química , Soroalbumina Bovina/química , Lipoproteínas , Dióxido de Silício/química
5.
Soft Matter ; 18(2): 434-445, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34908081

RESUMO

The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles. The presence of SDS, however, remarkably affects the nanoparticle-protein interactions via binding with the oppositely charged segments of lysozyme. In general, the SDS-lysozyme complexes possess a variety of structures (e.g., insoluble complexes of Ly(DS)8, crystalline structure, or micelle-like structure) depending on the surfactant-to-protein molar ratio (S/P). In the ternary system (HS40-lysozyme-SDS), lysozyme preferentially binds with SDS, instead of directly to nanoparticles. At low S/Ps (0 ≤ S/P ≤ 10), the SDS concentration is not enough to fully neutralize the charge of lysozyme, leading to the formation of cationic SDS-lysozyme complex-mediated nanoparticle aggregation. The morphology of the nanoparticle-(lysozyme-SDS) complexes is also found to be mass fractal kind where the fractal dimension increases with increasing SDS concentration. At S/P > 10, there is sufficient SDS to fully neutralize the lysozyme in the absence of competing charges from the particle but it is at S/P = 50 before all lysozyme desorbs from the particle and binds completely to the overwhelming amount of SDS, creating an oppositely charged lysozyme-SDS complex, which is repelled from the particle.


Assuntos
Nanopartículas , Dióxido de Silício , Muramidase , Dodecilsulfato de Sódio , Tensoativos
6.
Soft Matter ; 17(29): 6972-6984, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236073

RESUMO

The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution. It is found that a lower molar fraction of either surfactant in the protein-mixed surfactant complexes results in the formation of a connected protein-decorated micelle structure similar to those of pure surfactants. As the molar fraction of one of the surfactants in the mixture approaches the equimolar fraction, the structure formed by the protein-mixed surfactant is very different from the connected protein-decorated micelle like structure. Different microstructures of BSA-mixed surfactant complexes are formed, mostly governed by the structure of mixed surfactants arising from the strong electrostatic interaction of oppositely charged components. In this case, unfolded proteins wrap the structures of mixed surfactants around their surface. Along with the connected protein-decorated micelle like structure, rod-like and bilayer vesicles of protein-surfactant complexes are formed at different molar fractions of mixed surfactants.


Assuntos
Soroalbumina Bovina , Tensoativos , Animais , Ânions , Cátions , Bovinos , Humanos , Dodecilsulfato de Sódio
7.
Phys Chem Chem Phys ; 23(27): 14818-14829, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212952

RESUMO

Polymer-mediated interactions such as DNA-protein binding, protein aggregation, and filler reinforcement in polymers play crucial roles in many important biological and industrial processes. In this work, we report a detailed investigation of interactions between nanoparticles in the presence of high volume fractions of an adsorbing polymer. Small-angle X-ray scattering (SAXS) revealed the existence of a stable gel-like structure in the polymer-nanoparticle dispersion, whereby anchored polymer molecules on nanoparticles acted as bridging centres, while basic interactions between nanoparticles remained repulsive. Time-resolved SAXS measurements showed that the local volume fraction of nanoparticles increased during the drying of the dispersion owing to the shrinkage of the gel-like structure. Further, nanoparticle clusters in the dehydrated composite films showed percolated networks of nanoparticles, except for 5% loading that showed a phase-separated morphology as the volume fraction of nanoparticles remained lower than the percolation threshold. A significant restructuring of nanoparticle clusters occurred upon the hydration of nanocomposite films caused by the expansion of polymer networks induced by hydration forces. Temporal evolution of the volume fraction of nanoparticles during dehydration unveiled three distinct stages similar to the logistic growth function and this was attributed to the evaporation of free, intermediate, and bound water in the different stages. A plausible mechanism was elucidated based on the spring action analogy between anchored polymer chains and nanoparticles during hydration and dehydration processes.

8.
Langmuir ; 35(6): 2289-2302, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30672300

RESUMO

In this paper, we use dynamic light scattering in polarized and depolarized modes to determine the translational and rotational diffusion coefficients of concentrated rodlike cellulose nanocrystals in aqueous suspension. Within the range of studied concentrations (1-5 wt %), the suspension starts a phase transition from an isotropic to an anisotropic state as shown by polarized light microscopy and viscosity measurements. Small-angle neutron scattering measurements also confirmed the start of cellulose nanocrystal alignment and a decreasing distance between the cellulose nanocrystals with increasing concentration. As expected, rotational and translational diffusion coefficients generally decreased with increasing concentration. However, the translational parallel diffusion coefficient was found to show a local maximum at the onset of the isotropic-to-nematic phase transition. This is attributed to the increased available space for rods to move along their longitudinal axis upon alignment. This increased parallel diffusion coefficient thus confirms the general idea that rodlike particles gain translational entropy upon alignment while paying the price for losing rotational degrees of freedom. Once the concentration increases further, diffusion becomes more hindered even in the aligned regions due to a reduction in the rod separation distance. This leads once again to a decrease in translational diffusion coefficients. Furthermore, the relaxation rate for fast mode translational diffusion (parallel to the long particle axis) exhibited two regimes of relaxation behavior at concentrations where significant alignment of the rods is measured. We attribute this unusual dispersive behavior to two length scales: one linked to the particle length (at large wavevector q) and the other to a twist fluctuation correlation length (at low wavevector q) along the cellulose nanocrystal rods that is of a larger length when compared to the actual length of rods and could be linked to the size of aligned domains.

9.
Langmuir ; 35(30): 9867-9877, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31271288

RESUMO

Sodium dodecyl sulfate (SDS) is a well-known anionic surfactant that forms micelles in various solvents including supercooled sugar-urea melt. Here, we explore the application of contrast variation small-angle X-ray scattering (SAXS) in discerning the structure and interactions of SDS micelles in aqueous solution and in a room-temperature supercooled solvent. The SAXS patterns can be analyzed in terms of a core-shell ellipsoid model. For aqueous SDS micelles, at low volume fractions, the features due to intermicellar interaction, S(q), in the SAXS pattern are poorly resolved because of the prominent contribution from shell scattering. Increasing the electron density of the solvent by the addition of the urea or fructose-urea mixture (at a weight ratio of 6:4) permits the systematic variation of shell scattering without influencing the structure drastically. For a 10% solution of SDS in water, the contribution from the shell can be completely masked by the addition of 40% urea or fructose-urea mixture. The fructose-urea mixture is a preferred additive as it can vary the scattering length density over a wide range and serves as a matrix to form supercooled micelles. The structural parameters of micelles in supercooled fructose-urea melt are obtained from contrast variation SAXS, small-angle neutron scattering, and high-resolution transmission electron microscopy.

10.
Biomacromolecules ; 20(5): 2123-2134, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30908911

RESUMO

The evolution of interactions in the bovine serum albumin (BSA) protein solution on addition of mono and multivalent (di, tri and tetra) counterions has been studied using small-angle neutron scattering (SANS), dynamic light scattering (DLS) and ζ-potential measurements. It is found that in the presence of mono and divalent counterions, protein behavior can be well explained by DLVO theory, combining the contributions of screened Coulomb repulsion with the van der Waals attraction. The addition of mono or divalent salts in protein solution reduces the repulsive barrier and hence the overall interaction becomes attractive, but the system remains in one-phase for the entire concentration range of the salts, added in the system. However, contrary to DLVO theory, the protein solution undergoes a reentrant phase transition from one-phase to a two-phase system and then back to the one-phase system in the presence of tri and tetravalent counterions. The results show that tri and tetravalent (unlike mono and divalent) counterions induce short-range attraction between the protein molecules, leading to the transformation from one-phase to two-phase system. The two-phase is characterized by the fractal structure of protein aggregates. The excess condensation of these higher-valent counterions in the double layer around the BSA causes the reversal of charge of the protein molecules resulting into reentrant of the one-phase, at higher salt concentrations. The complete phase behavior with mono and multivalent ions has been explained in terms of the interplay of electrostatic repulsion and ion-induced short-range attraction between the protein molecules.


Assuntos
Soroalbumina Bovina/química , Cloreto de Alumínio/química , Cloretos/química , Difusão Dinâmica da Luz , Cloreto de Magnésio/química , Difração de Nêutrons , Concentração Osmolar , Conformação Proteica , Espalhamento a Baixo Ângulo , Eletricidade Estática , Zircônio/química
11.
Chemistry ; 24(60): 16085-16096, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30101461

RESUMO

The self-assembly of proteins into higher-order superstructures is ubiquitous in biological systems. Genetic methods comprising both computational and rational design strategies are emerging as powerful methods for the design of synthetic protein complexes with high accuracy and fidelity. Although useful, most of the reported protein complexes lack a dynamic behavior, which may limit their potential applications. On the contrary, protein engineering by using chemical strategies offers excellent possibilities for the design of protein complexes with stimuli-responsive functions and adaptive behavior. However, designs based on chemical strategies are not accurate and therefore, yield polydisperse samples that are difficult to characterize. Here, we describe simple design principles for the construction of protein complexes through a supramolecular chemical strategy. A micelle-assisted activity-based protein-labeling technology has been developed to synthesize libraries of facially amphiphilic synthetic proteins, which self-assemble to form protein complexes through hydrophobic interaction. The proposed methodology is amenable for the synthesis of protein complex libraries with molecular weights and dimensions comparable to naturally occurring protein cages. The designed protein complexes display a rich structural diversity, oligomeric states, sizes, and surface charges that can be engineered through the macromolecular design. The broad utility of this method is demonstrated by the design of most sophisticated stimuli-responsive systems that can be programmed to assemble/disassemble in a reversible/irreversible fashion by using the pH or light as trigger.


Assuntos
Substâncias Macromoleculares/química , Proteínas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Luz , Micelas , Modelos Moleculares , Processos Fotoquímicos , Conformação Proteica , Engenharia de Proteínas , Multimerização Proteica , Serina Proteases/química , Propriedades de Superfície , Tripsina/química
12.
Chemphyschem ; 19(7): 865-872, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29319220

RESUMO

An impetus for the sustained interest in the formation of vesicles is their potential application as efficient drug-delivery systems. A simple approach for ionic surfactants is to add a vesicle-inducing drug of opposite charge. In ionic gemini surfactants (GSs) two molecules are covalently linked by a spacer. Regarding drug delivery, GSs are more attractive candidates than their single-chain counterparts because of their high surface activity and the effect on the physicochemical properties of their solutions caused by changing the length of the spacer and inclusion of heteroatoms therein. Herein, the effect of the (anionic) anti-inflammatory drug diclofenac sodium (DS) on the morphology of aqueous micellar aggregates of gemini surfactant hexamethylene-1,6-bis (dodecyldimethylammonium) dibromide (12-6-12) at 25 °C is reported. Several independent techniques are used to demonstrate drug-induced micelle-to-vesicle transition. These include UV/Vis spectrophotometry, dynamic light scattering, TEM, and small-angle neutron scattering. The micelles are transformed into vesicles with increasing [DS]/[12-6-12] molar ratio; precipitation of the catanionic (DS-GS) complex then occurred, followed by partial resuspension of the weakly anionic precipitate. The stability of some of the prepared vesicles at human body temperature shows their potential use in drug delivery.


Assuntos
Alcenos/química , Diclofenaco/química , Portadores de Fármacos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Micelas , Microscopia Eletrônica de Transmissão , Modelos Químicos , Nefelometria e Turbidimetria , Tamanho da Partícula , Transição de Fase
13.
Langmuir ; 34(1): 259-267, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29202235

RESUMO

The evolution of the interaction between an anionic nanoparticle and a nonionic surfactant and their resultant phase behavior in aqueous solution in the presence of electrolyte and ionic surfactants have been studied. The mixed system of anionic silica nanoparticles (Ludox LS30) with nonionic surfactant decaethylene glycol monododecylether (C12E10) forms a highly stable clear phase over a wide concentration range of surfactant. Small-angle neutron scattering (SANS) and dynamic light scattering data show that the surfactant micelles adsorb on the surface of the nanoparticle, resulting in micellar-decorated nanoparticle structures. With the addition of a small amount of electrolyte into this system, the stability gets disturbed substantially and turns to a two-phase (turbid) system. The evolution of interaction in this system has been examined, and it was found that micelle-induced long-range depletion attraction (modeled by a double Yukawa potential) between nanoparticles leads to their aggregation. Interestingly, the addition of anionic surfactant sodium dodecyl sulfate (SDS) in this two-phase system transforms it to a transparent one-phase state, suppressing the depletion-mediated aggregation of nanoparticles. This is attributed to the formation of anionic C12E10-SDS mixed micelles, and it is their repulsive micelle-micelle interaction that disrupts the depletion phenomenon. On the other hand, the addition of cationic surfactant dodecyl trimethylammonium bromide (DTAB) to the turbid LS30-C12E10 electrolyte system shows no change in the turbidity arising from an aggregated nanoparticle system. The driving interaction, in this case, is different from that of the surfactant-mediated depletion attraction; it is due to the attraction between the nanoparticles mediated by the presence of oppositely charged DTAB micelles between them, resulting in a charge-driven bridging aggregation of nanoparticles. Each of these multicomponent systems has been investigated using contrast variation SANS measurements for different contrast conditions where the role of individual components (nanoparticle or surfactant) in the mixed system has been selectively studied. These results thus show that nanoparticle-surfactant micelle interactions can be tuned by the presence of electrolyte and/or choice of surfactant combination.

14.
Langmuir ; 34(20): 5679-5695, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29672062

RESUMO

The integration of nanoparticles with proteins is of high scientific interest due to the amazing potential displayed by their complexes, combining the nanoscale properties of nanoparticles with the specific architectures and functions of the protein molecules. The nanoparticle-protein complexes, in particular, are useful in the emerging field of nanobiotechnology (nanomedicine, drug delivery, and biosensors) as the nanoparticles having sizes comparable to that of living cells can access and operate within the cell. The understanding of nanoparticle interaction with different protein molecules is a prerequisite for such applications. The interaction of the two components has been shown to result in conformational changes in proteins and to affect the surface properties and colloidal stability of the nanoparticles. In this feature article, our recent studies exploring the driving interactions in nanoparticle-protein systems and resultant structures are presented. The anionic colloidal silica nanoparticles and two globular charged proteins [lysozyme and bovine serum albumin (BSA)] have been investigated as model systems. The adsorption behavior of the two proteins on nanoparticles is found to be completely different, but they both give rise to similar phase transformation from one phase to two phase in respective nanoparticle-protein systems. The presence of protein induces the short-range and long-range attraction between the nanoparticles with lysozyme and BSA, respectively. The observed phase behavior and its dependence on various physiochemical parameters (e.g., nanoparticle size, ionic strength, and solution pH) have been explained in terms of underlying interactions.


Assuntos
Nanopartículas/química , Proteínas/metabolismo , Adsorção , Muramidase/química , Proteínas/química , Soroalbumina Bovina/química , Dióxido de Silício/química
15.
Langmuir ; 33(5): 1227-1238, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28079383

RESUMO

The pH-dependent structure and interaction of anionic silica nanoparticles (diameter 18 nm) with two globular model proteins, lysozyme and bovine serum albumin (BSA), have been studied. Cationic lysozyme adsorbs strongly on the nanoparticles, and the adsorption follows exponential growth as a function of lysozyme concentration, where the saturation value increases as pH approaches the isoelectric point (IEP) of lysozyme. By contrast, irrespective of pH, anionic BSA does not show any adsorption. Despite having a different nature of interactions, both proteins render a similar phase behavior where nanoparticle-protein systems transform from being one-phase (clear) to two-phase (turbid) above a critical protein concentration (CPC). The measurements have been carried out for a fixed concentration of silica nanoparticles (1 wt %) with varying protein concentrations (0-5 wt %). The CPC is found to be much higher for BSA than for lysozyme and increases for lysozyme but decreases for BSA as pH approaches their respective IEPs. The structure and interaction in these systems have been examined using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The effective hydrodynamic size of the nanoparticles measured using DLS increases with protein concentration and is related to the aggregation of the nanoparticles above the CPC. The propensity of the nanoparticles to aggregate is suppressed for lysozyme and enhanced for BSA as pH approached their respective IEPs. This behavior is understood from SANS data through the interaction potential determined by the interplay of electrostatic repulsion with a short-range attraction for lysozyme and long-range attraction for BSA. The nanoparticle aggregation is caused by charge neutralization by the oppositely charged lysozyme and through depletion for similarly charged BSA. Lysozyme-mediated attractive interaction decreases as pH approaches the IEP because of a decrease in the charge on the protein. In the case of BSA, a decrease in the BSA-BSA repulsion enhances the depletion attraction between the nanoparticles as pH is shifted toward the IEP. The morphology of the nanoparticle aggregates is found to be mass fractal.


Assuntos
Muramidase/química , Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Animais , Bovinos , Difusão Dinâmica da Luz , Concentração de Íons de Hidrogênio , Estrutura Molecular , Muramidase/metabolismo , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
16.
Phys Chem Chem Phys ; 19(47): 31747-31755, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29167857

RESUMO

Subtle changes in the microstructure and dynamics of the triblock copolymer L121, (ethylene oxide)5 (propylene oxide)68 (ethylene oxide)5i.e., E5P68E5, and sodium dodecylsulfate (SDS) system in aqueous medium were investigated using high-resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) and small-angle neutron scattering (SANS) methods. NMR self-diffusion measurements helped us to understand the nature of binding of SDS with L121, and the formation of their mixed aggregates. These results showed that even at low [SDS] (∼2 mM), the addition of L121 stabilized the dynamics of SDS. Furthermore, the increase in [SDS] resulted in progressive changes in the diffusion behavior of both SDS and L121. 13C chemical shift analysis revealed that preferential binding of L121 occurred on the SDS micelle surface. Deuterium (2H) NMR spin-relaxation data evidenced that the formed mixed aggregates were non-spherical in terms of relaxation rate changes, and slowed the dynamics. The rotational correlation times of mixed aggregates were estimated from EPR analysis. A SANS study indicated the presence of uni- and multi-lamellar vesicles of L121 at low [SDS]. The vesicles transformed to mixed L121-SDS micelles in the presence of a higher [SDS]. This was supported by the measurements of 2H NMR spin-relaxation and EPR rotational correlation times.

17.
Langmuir ; 32(6): 1450-9, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26795459

RESUMO

The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase behavior of nanoparticle-polymer system are understood in terms of modifications in nanoparticle-nanoparticle and polymer-polymer interactions. The nanoparticle aggregates in two-phase systems are found to have surface fractal morphology.

18.
Biomacromolecules ; 17(10): 3318-3327, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27643890

RESUMO

Silk fibroin (SF) protein, produced by silkworm Bombyx mori, is a promising biomaterial, while sophorolipid (SL) is an amphiphilic functional biosurfactant synthesized by nonpathogenic yeast Candida bombicola. SL is a mixture of two forms, acidic (ASL) and lactonic (LSL), which when added to SF results in accelerated gelation of silk fibroin. LSL is known to have multiple biological functionalities and hence hydrogels of these green molecules have promising applications in the biomedical sector. In this work, SANS, NMR, and rheology are employed to examine the assembling properties of individual and mixed SLs and their interactions with SF to understand the mechanism that leads to rapid gelation. SANS and NMR studies show that ASL assembles to form charged micelles, while LSL forms micellar assemblies and aggregates of a mass fractal nature. ASL and LSL together form larger mixed micelles, all of which interact differently with SF. It is shown that preferential binding of LSL to SF causes rapid unfolding of the SF chain leading to the formation of intermolecular beta sheets, which trigger fast gelation. Based on the observations, a mechanism for gelation of SF in the presence of different sophorolipids is proposed.


Assuntos
Fibroínas/química , Hidrogéis/química , Reologia , Seda/química , Animais , Materiais Biocompatíveis/química , Bombyx/química , Fibroínas/ultraestrutura , Espectroscopia de Ressonância Magnética , Micelas , Seda/ultraestrutura
19.
Langmuir ; 30(6): 1588-98, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24475981

RESUMO

Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.


Assuntos
Proteínas Imobilizadas/química , Muramidase/química , Nanopartículas/química , Dióxido de Silício/química , Adsorção , Concentração de Íons de Hidrogênio , Nanopartículas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Água
20.
Int J Pharm ; 658: 124206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734276

RESUMO

The constraints associated with current cancer therapies have inspired scientists to develop advanced, precise, and safe drug delivery methods. These delivery systems boost treatment effectiveness, minimize harm to healthy cells, and combat cancer recurrence. To design advanced drug delivery vehicle with these character, in the present manuscript, we have designed a self-healing and injectable hybrid hydrogel through synergistically interacting metal organic framework, CuBTC with the poly(vinyl alcohol) (PVA). This hybrid hydrogel acts as a localized drug delivery system and was used to encapsulate and release the anticancer drug 5-Fluorouracil selectively at the targeted site in response to the physiological pH. The hydrogel was formed through transforming the gaussian coil like matrix of PVA-CuBTC into a three-dimensional network of hydrogel upon the addition of crosslinker; borax. The biocompatible character of the hydrogel was confirmed through cell viability test. The biocompatible hybrid hydrogel then was used to encapsulate and studied for the pH responsive release behavior of the anti-cancer drug, 5-FU. The in vitro cytotoxicity of the drug-loaded hydrogel was evaluated against MCF-7 and HeLa cells. The study confirms that the hybrid hydrogel is effective for targeted and sustained release of anticancer drugs at cancer sites.


Assuntos
Neoplasias da Mama , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Fluoruracila , Hidrogéis , Estruturas Metalorgânicas , Álcool de Polivinil , Humanos , Fluoruracila/administração & dosagem , Fluoruracila/química , Fluoruracila/farmacologia , Neoplasias da Mama/tratamento farmacológico , Células MCF-7 , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Feminino , Estruturas Metalorgânicas/química , Álcool de Polivinil/química , Sistemas de Liberação de Medicamentos/métodos , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA