Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125831

RESUMO

Medical procedures, such as radiation therapy, are a vital element in treating many cancers, significantly contributing to improved survival rates. However, a common long-term complication of such exposure is radiation-induced skin fibrosis (RISF), a complex condition that poses substantial physical and psychological challenges. Notably, about 50% of patients undergoing radiation therapy may achieve long-term remission, resulting in a significant number of survivors managing the aftereffects of their treatment. This article delves into the intricate relationship between RISF, reactive oxygen species (ROS), and angiotensin II (Ang II) signaling. It proposes the underlying mechanisms and examines potential treatments for mitigating skin fibrosis. The primary goal is to offer essential insights in order to better care for and improve the quality of life of cancer survivors who face the risk of developing RISF.


Assuntos
Angiotensina II , Fibrose , Espécies Reativas de Oxigênio , Pele , Humanos , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos da radiação , Pele/patologia , Animais , Lesões por Radiação/etiologia , Radioterapia/efeitos adversos , Transdução de Sinais
2.
Cytogenet Genome Res ; 163(3-4): 187-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37348469

RESUMO

There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.


Assuntos
Radiação Ionizante , Humanos , Feminino , Masculino , Animais , Camundongos , Modelos Animais
3.
Bioorg Med Chem Lett ; 30(16): 127292, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32631514

RESUMO

Effective therapies are lacking to treat gastrointestinal infections caused by the genus Cryptosporidium, which can be fatal in the immunocompromised. One target of interest is Cryptosporidium hominis (C. hominis) thymidylate synthase-dihydrofolate reductase (ChTS-DHFR), a bifunctional enzyme necessary for DNA biosynthesis. Targeting the TS-TS dimer interface is a novel strategy previously used to identify inhibitors against the related bifunctional enzyme in Toxoplasma gondii. In the present study, we target the ChTS dimer interface through homology modeling and high-throughput virtual screening to identifying allosteric, ChTS-specific inhibitors. Our work led to the discovery of methylenedioxyphenyl-aminophenoxypropanol analogues which inhibit ChTS activity in a manner that is both dose-dependent and influenced by the conformation of the enzyme. Preliminary results presented here include an analysis of structure activity relationships and a ChTS-apo crystal structure of ChTS-DHFR supporting the continued development of inhibitors that stabilize a novel pocket formed in the open conformation of ChTS-TS.


Assuntos
Cryptosporidium/enzimologia , Inibidores Enzimáticos/farmacologia , Timidilato Sintase/antagonistas & inibidores , Sítio Alostérico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Timidilato Sintase/metabolismo
4.
Mol Microbiol ; 99(6): 999-1014, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26585333

RESUMO

Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity.


Assuntos
Antimaláricos/farmacologia , Carboxiliases/antagonistas & inibidores , Carboxiliases/metabolismo , Inibidores Enzimáticos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/enzimologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Clonagem Molecular , Feminino , Malária Falciparum/microbiologia , Camundongos , Testes de Sensibilidade Parasitária , Fosfatidilserinas/metabolismo , Plasmodium falciparum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
5.
Int J Mol Sci ; 18(1)2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-28029115

RESUMO

The purpose of this study was two-fold: (1) to formulate γ-tocotrienol (GT3) in a nanoemulsion formulation as a prophylactic orally administered radioprotective agent; and (2) to optimize the storage conditions to preserve the structural integrity of both the formulation and the compound. γ-tocotrienol was incorporated into a nanoemulsion and lyophilized with lactose. Ultra performance liquid chromatography-mass spectroscopy (UPLC-MS) was used to monitor the chemical stability of GT3 over time, the particle size and ζ potential, and scanning electron microscopy (SEM) were used to study the physical stability of the nanoemulsion. Radioprotective and toxicity studies were performed in mice. The liquid formulation exhibited GT3 degradation at all storage temperatures. Lyophilization, in the presence of lactose, significantly reduced GT3 degradation. Both the liquid and lyophilized nanoemulsions had stable particle size and ζ potential when stored at 4 °C. Toxicity studies of the nanoemulsion resulted in no observable toxicity in mice at an oral dose of 600 mg/kg GT3. The nano-formulated GT3 (300 mg/kg) demonstrated enhanced survival efficacy compared to GT3 alone (200 and 400 mg/kg) in CD2F1 mice exposed to total body gamma radiation. The optimal long-term storage of formulated GT3 is as a powder at -20 °C to preserve drug and formulation integrity. Formulation of GT3 as a nanoemulsion for oral delivery as a prophylactic radioprotectant shows promise and warrants further investigation.


Assuntos
Cromanos/química , Protetores contra Radiação/química , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Administração Oral , Animais , Cromanos/administração & dosagem , Cromanos/efeitos adversos , Cromanos/uso terapêutico , Estabilidade de Medicamentos , Emulsões/química , Lactose/química , Masculino , Camundongos , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/efeitos adversos , Protetores contra Radiação/uso terapêutico , Vitamina E/administração & dosagem , Vitamina E/efeitos adversos , Vitamina E/química , Vitamina E/uso terapêutico
6.
Biochem Biophys Res Commun ; 450(1): 347-52, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24944023

RESUMO

A microplate, scintillation proximity assay to measure the coupled transglycosylase-transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[(3)H]N-acetylglucosamine in the presence of 40 µM vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-D-ala-D-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a 'neutral' combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported.


Assuntos
Escherichia coli/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Penicilinas/administração & dosagem , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/biossíntese , Peptidil Transferases/metabolismo , Vancomicina/administração & dosagem , Bioensaio/instrumentação , Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Interações Medicamentosas , Ativação Enzimática , Desenho de Equipamento , Escherichia coli/efeitos dos fármacos , Miniaturização , Peptídeos/administração & dosagem , Mapeamento de Interação de Proteínas/instrumentação
7.
Bioorg Med Chem Lett ; 24(17): 4158-61, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25127103

RESUMO

Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors.


Assuntos
Cryptosporidium/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Timidilato Sintase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Pirimidinas/síntese química , Pirróis/síntese química , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
8.
Bioorg Med Chem Lett ; 24(4): 1232-5, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440298

RESUMO

The parasite Toxoplasma gondii can lead to toxoplasmosis in those who are immunocompromised. To combat the infection, the enzyme responsible for nucleotide synthesis thymidylate synthase-dihydrofolate reductase (TS-DHFR) is a suitable drug target. We have used virtual screening to determine novel allosteric inhibitors at the interface between the two TS domains. Selected compounds from virtual screening inhibited TS activity. Thus, these results show that allosteric inhibition by small drug-like molecules can occur in T. gondii TS-DHFR and pave the way for new and potent species-specific inhibitors.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Timidilato Sintase/antagonistas & inibidores , Toxoplasma/enzimologia , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo
9.
Radiat Res ; 201(5): 449-459, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373011

RESUMO

In the current geopolitical climate there is an unmet need to identify and develop prophylactic radiation countermeasures, particularly to ensure the well-being of warfighters and first responders that may be required to perform on radiation-contaminated fields for operational or rescue missions. Currently, no countermeasures have been approved by the U.S. FDA for prophylactic administration. Here we report on the efficacious nature of FSL-1 (toll-like receptor 2/6 agonist) and the protection from acute radiation syndrome (ARS) in a murine total-body irradiation (TBI) model. A single dose of FSL-1 was administered subcutaneously in mice. The safety of the compound was assessed in non-irradiated animals, the efficacy of the compound was assessed in animals exposed to TBI in the AFRRI Co-60 facility, the dose of FSL-1 was optimized, and common hematological parameters [complete blood cell (CBC), cytokines, and bone marrow progenitor cells] were assessed. Animals were monitored up to 60 days after exposure and radiation-induced damage was evaluated. FSL-1 was shown to be non-toxic when administered to non-irradiated mice at doses up to 3 mg/kg. The window of efficacy was determined to be 24 h prior to 24 h after TBI. FSL-1 administration resulted in significantly increased survival when administered either 24 h prior to or 24 h after exposure to supralethal doses of TBI. The optimal dose of FSL-1 administration was determined to be 1.5 mg/kg when administered prior to irradiation. Finally, FSL-1 protected the hematopoietic system (recovery of CBC and bone marrow CFU). Taken together, the effects of increased survival and accelerated recovery of hematological parameters suggests that FSL-1 should be developed as a novel radiation countermeasure for soldiers and civilians, which can be used either before or after irradiation in the aftermath of a radiological or nuclear event.


Assuntos
Síndrome Aguda da Radiação , Modelos Animais de Doenças , Oligopeptídeos , Irradiação Corporal Total , Animais , Camundongos , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Irradiação Corporal Total/efeitos adversos
10.
Am J Ophthalmol Case Rep ; 35: 102001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38827998

RESUMO

Purpose: To report a case of bilateral acute macular neuroretinopathy (AMN) associated with COVID-19 infection presenting with central scotoma. Observation: A 26-year-old female presented with a chief complaint of bilateral central scotomas for the last seven days. She had a history of fever over the past ten days, and RT-PCR test for COVID-19 was positive on the second day of fever. She had been vaccinated against COVID-19 eight months prior. Her best corrected visual acuity was 6/6 in both eyes on the Snellen chart. Dilated fundus evaluation revealed subtle bilateral perifoveal grey macular lesions. Optical coherence tomography (OCT) demonstrated focal hyperreflectivity at the level of the outer nuclear and plexiform layer consistent with bilateral AMN. Near-infrared reflectance (NIR) and red-free (RF) imaging showed large, confluent hyporeflective lesions in the right eye and discrete petaloid lesions with apices pointing toward the fovea in the left eye. OCT angiography (OCTA) revealed decreased flow signal at the level of the deep capillary plexus (DCP) and choriocapillaris (CC) in both eyes. Automated visual field testing (Humprey Field Analyzer (HFA) 24-2) revealed bilateral central scotoma with depression of adjacent points. After two weeks, the patient had depressed visual fields on HFA 10-2. At two months of final follow-up, OCT macula, NIR and RF images revealed resolving AMN lesions in both eyes. OCTA showed an increase in perfusion at the level of the DCP. There was a decrease in scotoma density on HFA 10-2, suggestive of resolving AMN. Conclusion and importance: AMN with central scotoma as presenting feature of COVID-19 is rare. Fundus findings may be very subtle in AMN, but NIR and RF imaging delineate the lesions well. OCT, NIR imaging, OCTA and HFA 10-2 can be used to assess the clinical course of AMN.

11.
Radiat Res ; 201(1): 19-34, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38014611

RESUMO

The goal of this study was to establish a model of partial-body irradiation (PBI) sparing 2.5% of the bone marrow (BM2.5-PBI) that accurately recapitulates radiological/nuclear exposure scenarios. Here we have reported a model which produces gastrointestinal (GI) damage utilizing a clinical linear accelerator (LINAC) with precise dosimetry, which can be used to develop medical countermeasures (MCM) for GI acute radiation syndrome (ARS) under the FDA animal rule. The PBI model (1 hind leg spared) was developed in male and female C57BL/6 mice that received radiation doses ranging from 12-17 Gy with no supportive care. GI pathophysiology was assessed by crypt cell loss and correlated with peak lethality between days 4 and 10 after PBI. The radiation dose resulting in 50% mortality in 30 days (LD50/30) was determined by probit analysis. Differential blood cell counts in peripheral blood, colony forming units (CFU) in bone marrow, and sternal megakaryocytes were analyzed between days 1-30, to assess the extent of hematopoietic ARS (H-ARS) injury. Radiation-induced GI damage was also assessed by measuring: 1. bacterial load (16S rRNA) by RT-PCR on days 4 and 7 after PBI in liver, spleen and jejunum, 2. liposaccharide binding protein (LBP) levels in liver, and 3. fluorescein isothiocyanate (FITC)-dextran, E-selectin, sP-selectin, VEGF, FGF-2, MMP-9, citrulline, and serum amyloid A (SAA) levels in serum. The LD50/30 of male mice was 14.3 Gy (95% confidence interval 14.1-14.7 Gy) and of female mice was 14.5 Gy (95% confidence interval 14.3-14.7 Gy). Secondary endpoints included loss of viable crypts, higher bacterial loads in spleen and liver, higher LBP in liver, increased FITC-dextran and SAA levels, and decreased levels of citrulline and endothelial biomarkers in serum. The BM2.5-PBI model, developed for the first time with precise dosimetry, showed acute radiation-induced GI damage that is correlated with lethality, as well as a response to various markers of inflammation and vascular damage. Sex-specific differences were observed with respect to radiation dose response. Currently, no MCM is available as a mitigator for GI-ARS. This BM2.5-PBI mouse model can be regarded as the first high-throughput PBI model with precise dosimetry for developing MCMs for GI-ARS under the FDA animal rule.


Assuntos
Síndrome Aguda da Radiação , Masculino , Feminino , Camundongos , Animais , Citrulina , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Radiometria
12.
Radiat Res ; 201(5): 460-470, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376474

RESUMO

With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Camundongos , Masculino , Feminino , Pulmão/efeitos da radiação , Pulmão/patologia , Pneumonite por Radiação/patologia , Pneumonite por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/etiologia
13.
iScience ; 27(2): 108867, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318389

RESUMO

The detrimental effects of high-dose ionizing radiation on human health are well-known, but the influence of sex differences on the delayed effects of acute radiation exposure (DEARE) remains unclear. Here, we conducted six-month animal experiments using escalating radiation doses (7-9 Gy) on male and female C57BL/6 mice. The results show that female mice exhibited greater resistance to radiation, showing increased survival at six months post-total body irradiation. LD50/30 (lethal dose expected to cause 50% lethality in 30 days) for female mice is 8.08 Gy, while for male mice it is 7.76 Gy. DEARE causes time- and sex-dependent dysregulation of microRNA expression, processing enzymes, and the HOTAIR regulatory pathway. Differential regulation of molecular patterns associated with growth, development, apoptosis, and cancer is also observed in male and female mice. These findings shed light on the molecular basis of age and sex differences in DEARE response and emphasize the importance of personalized medicine for mitigating radiation-induced injuries and diseases.

14.
Radiat Res ; 201(5): 406-417, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319684

RESUMO

The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.


Assuntos
Síndrome Aguda da Radiação , Animais , Camundongos , Masculino , Síndrome Aguda da Radiação/patologia , Síndrome Aguda da Radiação/etiologia , Relação Dose-Resposta à Radiação , Jejuno/efeitos da radiação , Jejuno/patologia , Modelos Animais de Doenças , Índice de Gravidade de Doença , Trato Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/patologia , Peso Corporal/efeitos da radiação , Lesões Experimentais por Radiação/patologia
15.
Bioorg Med Chem Lett ; 23(19): 5426-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23927969

RESUMO

Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2'-chlorophenyl with a sulfur bridge with a Ki of 8.83±0.67 nM is discussed in terms of several Van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors.


Assuntos
Cryptosporidium/enzimologia , Pirimidinas/química , Pirróis/química , Timidilato Sintase/antagonistas & inibidores , Antiprotozoários/química , Antiprotozoários/farmacologia , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Pirimidinas/farmacologia , Pirróis/farmacologia
16.
Microbiol Spectr ; : e0141923, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655898

RESUMO

Indigenous white-rot fungal isolates Schizophyllum commune, Phanerochaete chrysosporium, Ganoderma racenaceum, and Lentinus squarrosulus, demonstrating the ability to depolymerize lignin of the crop residues, were studied for their potential to produce ligninolytic enzymes using modified production media under conditions of limiting and excess nitrogen for higher enzymatic expressions. Secretome-rich media on the investigation confirmed the successful production of lignin-depolymerizing enzymes, viz. laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. Production of laccases and peroxidases was statistically significant in nitrogen-limiting media with and without the substrate, across all white-rot fungal cultures at 95% confidence interval. Nitrogen-limiting media with the substrate on analysis extracellularly expressed 99.27 U of laccase and 68.48 U of manganese peroxidase in Schizophyllum commune, while 195.14 U of lignin peroxidase was produced by Phanerochaete chrysosporium. Lentinus squarrosulus expressed 455.34 U of laccase and 357.13 U of versatile peroxidase with 250.09 U of laccase and 206.95 U of manganese peroxidase produced by Ganoderma racenaceum for every milliliter of the media used. Nitrogen-limiting media triggered the production of laccase during the initial stages of growth while the expression of peroxidases was predominant at a later stage. Also, this media evinced increased enzymatic yields with low biomass content compared to nitrogen-excess conditions. The extant study confirmed the positive influence of nitrogen-limiting media in the efficient production of ligninolytic enzymes and their suggestive degradation potential for environmental pollutants, making these enzymes a safe, clean alternative to the use of chemicals and the media to be effective for large-scale production of ligninolytic enzymes. IMPORTANCE Lignin on account of its high abundance, complex polymeric structure, and biochemical properties is identified as a promising candidate in renewable energy and bioproduct manufacturing. However, depolymerization of lignin remains a major challenge in lignin utilization, entailing the employment of harsh treatments representing not only an environmental concern but also a waste of economic potential. Developing an alternative green technology to minimize this impact is imperative. Methods using enzymes to depolymerize lignin are the focus of recent studies. Current research work emphasized the efficient expression of the major lignin-depolymerizing enzymes: laccases, lignin peroxidases, manganese peroxidases, and versatile peroxidases from native isolates of white-rot fungus for several biotechnological applications as well as treatment of crop residues for use as ruminant feed in improving productivity. The importance of nitrogen in augmenting the expression of lignin-depolymerizing enzymes and providing a media recipe for the cost-effective production of ligninolytic enzymes is highlighted.

17.
Antioxidants (Basel) ; 12(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37507957

RESUMO

The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family of aminothiols designed to reduce toxicity while scavenging reactive oxygen species (ROS). Our study investigated the protective role of a single oral administration of PrC-210 against radiation-induced hematopoietic and intestinal injury in mice. Pre-treatment with PrC-210 significantly improved the survival of mice exposed to a lethal dose of radiation. Our findings indicated that the radioprotective properties of PrC-210 are achieved by accelerating the recovery of the hematopoietic system, stimulating bone marrow progenitor cells, and ameliorating additional biomarkers of hematopoietic injury. PrC-210 pre-treatment reduced intestinal injury in mice exposed to a lethal dose of radiation by restoring jejunal crypts and villi, reducing translocation of bacteria to the spleen, maintaining citrulline levels, and reducing the sepsis marker serum amyloid A (SAA) in serum. Finally, PrC-210 pre-treatment led to a significant reduction (~10 fold) of Nos2 expression (inducible nitric oxide) in the spleen and decreased oxidative stress by enhancing the antioxidant defense system. These data support the further development of PrC-210 to receive approval from the FDA to protect warfighters and first responders from exposure to the harmful effects of ionizing radiation.

18.
Toxics ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276718

RESUMO

IL-18 has been shown to play important roles in response to total body irradiation. However, homogenous total body irradiation is not a realistic model to reflect the radiation exposure in a real nuclear event. To further study the roles of IL-18 in a real nuclear scenario, we developed a mouse partial body irradiation with 5% bone marrow sparing (PBI/BM5) model to mimic the inhomogeneous radiation exposure. We established the dose response curves of PBI/BM5 using different radiation doses ranging from 12 to 16 Gy. Using the PBI/BM5 model, we showed that IL-18 knockout mice were significantly more radiation resistant than the wild-type mice at 14.73 Gy. We further studied the hematopoietic changes using a complete blood count, bone marrow colony-forming assays, and serum cytokine assays on the mice exposed to PBI/BM5 with IL-18BP treatment and wild-type/IL-18 knockout mice. In conclusion, our data suggest that IL-18 plays important roles in mouse survival in a realistic nuclear exposure model, potentially through the IL-18/IFNγ pathway.

19.
Sci Rep ; 13(1): 15211, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709916

RESUMO

Thrombopoietin (TPO) is the primary regulator of platelet generation and a stimulator of multilineage hematopoietic recovery following exposure to total body irradiation (TBI). JNJ­26366821, a novel PEGylated TPO mimetic peptide, stimulates platelet production without developing neutralizing antibodies or causing any adverse effects. Administration of a single dose of JNJ­26366821 demonstrated its efficacy as a prophylactic countermeasure in various mouse strains (males CD2F1, C3H/HeN, and male and female C57BL/6J) exposed to Co-60 gamma TBI. A dose dependent survival efficacy of JNJ­26366821 (- 24 h) was identified in male CD2F1 mice exposed to a supralethal dose of radiation. A single dose of JNJ­26366821 administered 24, 12, or 2 h pre-radiation resulted in 100% survival from a lethal dose of TBI with a dose reduction factor of 1.36. There was significantly accelerated recovery from radiation-induced peripheral blood neutropenia and thrombocytopenia in animals pre-treated with JNJ­26366821. The drug also increased bone marrow cellularity and megakaryocytes, accelerated multi-lineage hematopoietic recovery, and alleviated radiation-induced soluble markers of bone marrow aplasia and endothelial damage. These results indicate that JNJ­26366821 is a promising prophylactic radiation countermeasure for hematopoietic acute radiation syndrome with a broad window for medical management in a radiological or nuclear event.


Assuntos
Síndrome Aguda da Radiação , Neutropenia , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Trombopoetina/farmacologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Polietilenoglicóis/farmacologia
20.
Indian J Ophthalmol ; 71(6): 2500-2503, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37322670

RESUMO

Purpose: Glaucoma is the second leading cause of blindness worldwide, affecting more than 64 million people aged 40-80. The best way to manage primary open-angle glaucoma (POAG) is by lowering the intraocular pressure (IOP). Netarsudil is a Rho kinase inhibitor, the only class of antiglaucoma medications that reorganizes the extracellular matrix to improve the aqueous outflow through the trabecular pathway. Methods: An open-label, real-world, multicentric, observation-based 3-month study was performed for assessing the safety and ocular hypotensive efficacy of netarsudil ophthalmic solution (0.02% w/v) in patients with elevated IOP. Patients were given netarsudil ophthalmic solution (0.02% w/v) as a first-line therapy. Diurnal IOP measurements, best-corrected visual acuity, and adverse event assessments were recorded at each of the five visits (Day-1: screening day and first dosing day; subsequent observations were taken at 2 weeks, 4 weeks, 6 weeks, and 3 months). Results: Four hundred and sixty-nine patients from 39 centers throughout India completed the study. The mean IOP at baseline of the affected eyes was 24.84 ± 6.39 mmHg (mean ± standard deviation). After the first dose, the IOP was measured after 2, 4, and 6 weeks, with the final measurement taken at 3 months. The percentage reduction in IOP in glaucoma patients after 3 months of once-daily netarsudil 0.02% w/v solution use was 33.34%. The adverse effects experienced by patients were not severe in the majority of cases. Some adverse effects observed were redness, irritation, itching, and others, but only a small number of patients experienced severe reactions, as reported in a decreasing order: redness > irritation > watering > itching > stinging > blurring. Conclusion: We found that netarsudil 0.02% w/v solution monotherapy when used as the first-line treatment in primary open-angle glaucoma and ocular hypertension was both safe and effective.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Humanos , Soluções Oftálmicas , Hipertensão Ocular/diagnóstico , Glaucoma/tratamento farmacológico , Pressão Intraocular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA